Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 20(11): 1387-1393, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694017

RESUMO

The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.


Assuntos
Actinobacteria , Oligopeptídeos , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/química , Metiltransferases/química , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/genética
2.
Proc Natl Acad Sci U S A ; 115(41): E9514-E9522, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237288

RESUMO

Bacterial plant pathogens cause significant crop damage worldwide. They invade plant cells by producing a variety of virulence factors, including small-molecule toxins and phytohormone mimics. Virulence of the model pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) is regulated in part by the sigma factor HrpL. Our study of the HrpL regulon identified an uncharacterized, three-gene operon in Pto that is controlled by HrpL and related to the Erwinia hrp-associated systemic virulence (hsv) operon. Here, we demonstrate that the hsv operon contributes to the virulence of Pto on Arabidopsis thaliana and suppresses bacteria-induced immune responses. We show that the hsv-encoded enzymes in Pto synthesize a small molecule, phevamine A. This molecule consists of l-phenylalanine, l-valine, and a modified spermidine, and is different from known small molecules produced by phytopathogens. We show that phevamine A suppresses a potentiation effect of spermidine and l-arginine on the reactive oxygen species burst generated upon recognition of bacterial flagellin. The hsv operon is found in the genomes of divergent bacterial genera, including ∼37% of P. syringae genomes, suggesting that phevamine A is a widely distributed virulence factor in phytopathogens. Our work identifies a small-molecule virulence factor and reveals a mechanism by which bacterial pathogens overcome plant defense. This work highlights the power of omics approaches in identifying important small molecules in bacteria-host interactions.


Assuntos
Arabidopsis/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/metabolismo , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Fatores de Virulência/genética
3.
J Phys Chem A ; 117(27): 5620-31, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23782312

RESUMO

Surface adsorbed organics are ubiquitous components of inorganic tropospheric aerosols and have the potential to alter aerosol chemical and physical properties. To assess the impact of adsorbed organics on water uptake by inorganic substrates, we used diffuse reflectance infrared spectroscopy to compared water adsorption isotherms for uncoated NaCl and α-Al2O3 samples, samples containing a monolayer of adsorbed catechol, and adsorbed catechol samples following ozonolysis. Adsorption of gaseous catechol on to the inorganic substrates produced vibrational features indicating physisorption on NaCl and displacement of surface hydroxyl groups forming binuclear bidentate catecholate on α-Al2O3, with surface concentrations of 2-3 × 10(18) molecules m(-2). Subsequent heterogeneous ozonolysis produced muconic acid at a rate 4-5 times faster on NaCl compared to α-Al2O3, with predicted atmospheric lifetimes of 4.3 and 18 h, respectively, assuming a tropospheric ozone concentration of 40 ppb. Water adsorption isotherms for all NaCl samples were indistinguishable within experimental uncertainty, indicating that these organic monolayers had negligible impact on coadsorbed water surface concentrations for these systems. α-Al2O3-catechol samples exhibited dramatically less water uptake compared to uncoated α-Al2O3, while oxidation of surface adsorbed catechol had no effect on the extent of water uptake. For both substrates, adsorbed organics increased the relative abundance of "ice-like" versus "liquid-like" water, with the effect larger for catechol than oxidized ozonolysis products. These results highlight the importance of aerosol substrate in understanding the heterogeneous ozonolysis of adsorbed polyphenols and suggest such coatings may impair ice nucleation by aluminosilicate mineral aerosol.


Assuntos
Óxido de Alumínio/química , Catecóis/química , Ozônio/química , Cloreto de Sódio/química , Água/química , Adsorção , Aerossóis/química , Estrutura Molecular , Teoria Quântica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...