Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 103(2): 407-10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20943523

RESUMO

Lomaantha phragmitis sp. nov. is described and illustrated from a specimen collected on dead culms of Phragmites communis in southern China. The fungus differs from other described Lomaantha species in its conidiophores, conidiogenous cells and conidial appendages. Conidial morphology and presence or absence of percurrent proliferation of conidiogenous cells are the main characters distinguishing species within this genus. We provided a key and synoptic table of morphological characters of all three Lomaantha species.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Poaceae/microbiologia , China , Fungos/genética , Fungos/crescimento & desenvolvimento , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
2.
Environ Health Perspect ; 118(9): 1223-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20462828

RESUMO

BACKGROUND: Although the effect of elevated carbon dioxide (CO2) concentration on pollen production has been established in some plant species, impacts on fungal sporulation and antigen production have not been elucidated. OBJECTIVE: Our purpose was to examine the effects of rising atmospheric CO2 concentrations on the quantity and quality of fungal spores produced on timothy (Phleum pratense) leaves. METHODS: Timothy plants were grown at four CO2 concentrations (300, 400, 500, and 600 micromol/mol). Leaves were used as growth substrate for Alternaria alternata and Cladosporium phlei. The spore abundance produced by both fungi, as well as the size (microscopy) and antigenic protein content (ELISA) of A. alternata, were quantified. RESULTS: Leaf carbon-to-nitrogen ratio was greater at 500 and 600 micromol/mol, and leaf biomass was greater at 600 micromol/mol than at the lower CO2 concentrations. Leaf carbon-to-nitrogen ratio was positively correlated with A. alternata spore production per gram of leaf but negatively correlated with antigenic protein content per spore. At 500 and 600 micromol/mol CO2 concentrations, A. alternata produced nearly three times the number of spores and more than twice the total antigenic protein per plant than at lower concentrations. C. phlei spore production was positively correlated with leaf carbon-to-nitrogen ratio, but overall spore production was much lower than in A. alternata, and total per-plant production did not vary among CO2 concentrations. CONCLUSIONS: Elevated CO2 concentrations often increase plant leaf biomass and carbon-to-nitrogen ratio. Here we demonstrate for the first time that these leaf changes are associated with increased spore production by A. alternata, a ubiquitous allergenic fungus. This response may contribute to the increasing prevalence of allergies and asthma.


Assuntos
Alternaria/efeitos dos fármacos , Alternaria/imunologia , Antígenos de Fungos/biossíntese , Dióxido de Carbono/efeitos adversos , Esporos Fúngicos/efeitos dos fármacos , Alternaria/fisiologia , Phleum/microbiologia , Folhas de Planta/microbiologia
3.
Mycologia ; 102(2): 374-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20361504

RESUMO

A new species of Ulocladium was isolated from diseased leaves from two Cucumis sp. growing in Sinkiang and Gansu provinces of China. Conidia were isolated from necrotic leaves and used to establish single-spore pure cultures. Conidia were harvested from cultures 7 d after incubation for morphological comparisons. The morphology of this species resembles that of U. botrytis and U. consortiale. However it is distinguished from these two species by the sizes of obovoid to broadly ellipsoidal conidia and longer conidiophores. A taxonomic description of U. cantlous, comparison with related species in this genus, and a species phylogeny based on the partial nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase (gpd) gene and the Alternaria alternata major allergen (Alt a 1) gene are provided.


Assuntos
Ascomicetos/isolamento & purificação , Cucumis melo , Doenças das Plantas/microbiologia , Ascomicetos/enzimologia , Ascomicetos/genética , Ascomicetos/ultraestrutura , Sequência de Bases , China , DNA Fúngico/química , DNA Fúngico/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
4.
Genesis ; 47(8): 535-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19422018

RESUMO

Phytophthora capsici causes serious diseases in numerous crop plants. Polygalacturonases (PGs) are cell wall-degrading enzymes that play an important role in pathogenesis in straminopilous pathogens. To understand PGs as they relate to the virulence of P. capsici, Pcipg2 was identified from a genomic library of a highly virulent P. capsici strain. Pcipg2 was strongly expressed during symptom development after the inoculation of pepper leaves with P. capsici. The wild protein (PCIPGII) was obtained from the expression of pcipg2 and found that increasing activity of PGs in PCIPGII-treated pepper leaves was consistent with increasing symptom development. Asp residues in active sites within pcipg2 affected PCIPGII activity or its virulence on pepper leaves. Results show that pcipg2 is an important gene among pcipg genes, and illustrate the benefit of analyzing mechanisms of pathogenicity during the period of host/parasite interaction.


Assuntos
Capsicum/microbiologia , Proteínas Fúngicas/fisiologia , Phytophthora/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Western Blotting , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Phytophthora/genética , Phytophthora/patogenicidade , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência
5.
Plant Dis ; 90(2): 146-154, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30786405

RESUMO

Dead spot (Ophiosphaerella agrostis) is a relatively new disease of young creeping bentgrass and hybrid bermudagrass putting greens in the United States. Little is known about the biology or genetic diversity of the pathogen. O. agrostis is unusual in that it produces prodigious numbers of pseudothecia in the field throughout the summer months and has no known asexual state. A total of 77 O. agrostis isolates were collected from 21 different bentgrass putting greens and one hybrid bermudagrass green in 11 states. DNA fingerprint analysis revealed that 78 out of 97 markers were polymorphic (80.4%), providing 57 unique profiles. Genetic variation of O. agrostis was diverse, and isolates separated into three distinct clades with ≥69% similarity. Analysis of molecular variance indicated that the geographic origins of the isolates and the ability to produce pseudothecia were the best indicators for genetic similarity among O. agrostis isolates. Colony color varied among the isolates, but generally was similar for isolates residing within two clades (B and C). Colony color of isolates within clade A appeared to be a mixture of the colony colors exhibited by clades B and C. Isolates examined within each clade generally had varying levels of pseudothecia production and varying colony colors when grown on PDA. Although O. agrostis is a homothallic species, it is unclear if outcrossing among strains occurs.

6.
Phytopathology ; 95(11): 1356-62, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18943368

RESUMO

ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.

7.
Plant Dis ; 89(9): 980-985, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30786632

RESUMO

Dead spot is a relatively new disease of creeping bentgrass and hybrid bermudagrass that is incited by Ophiosphaerella agrostis. Initial symptoms are difficult to diagnose and clinicians generally rely on the presence of pseudothecia within infected tissue or isolation of O. agrostis on an artificial medium. The main goal of this study was to develop a polymerase chain reaction-based technique capable of quickly identifying O. agrostis within infected creeping bentgrass tissues. Oligonucleotide primers specific for O. agrostis were developed based on the internal transcribed spacer (ITS) rDNA regions (ITS1 and ITS2) of three previously sequenced isolates of O. agrostis. The 22-bp primers amplified a 445- or 446-bp region of 80 O. agrostis isolates collected from creeping bentgrass and bermudagrass in 11 states. Primers did not amplify DNA from other common turfgrass pathogens, including three closely related species of Ophiosphaerella. Selective amplification of O. agrostis was successful from field-infected creeping bent-grass samples and primers did not amplify the DNA of noninfected, field-grown creeping bent-grass or hybrid bermudagrass plants. Amplification of purified O. agrostis DNA was successful at quantities between 50 ng and 5 pg. The entire process, including DNA isolation, amplification, and amplicon visualization, may be completed within 4 h. These results indicate the specificity of these primers for assisting in the accurate and timely identification of O. agrostis and the diagnosis of dead spot in both bentgrass and bermudagrass hosts.

8.
Plant Dis ; 87(5): 557-562, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-30812958

RESUMO

The annual Medicago spp. core collection, consisting of 201 accessions, represents the genetic diversity inherent in 3,159 accessions from 36 annual Medicago spp. This germ plasm was evaluated for resistance to spring black stem and leaf spot caused by Phoma medicaginis. Spring black stem and leaf spot is a major destructive disease in perennial alfalfa (Medicago sativa) grown in North America, Europe, and other temperate regions. Disease control is based principally on the use of cultivars with moderate levels of resistance. Evaluation of the core collection was conducted using standardized environmental conditions in growth chambers, and included the M. sativa standard reference cultivars Ramsey (resistant) and Ranger (susceptible). The degree of resistance found among accessions within species was variable, but most annual species and accessions were susceptible. Most accessions from 10 species exhibited high disease resistance. These included accessions of M. constricta, M. doliata, M. heyniana, M. laciniata, M. lesinsii, M. murex, M. orbicularis, M. praecox, M. soleirolii, and M. tenoreana. Most of the accessions within M. arabica, M. minima, M. lanigera, M. rotata, M. rugosa, M. sauvagei, and M. scutellata were highly susceptible. Disease reactions among some accessions within species were highly variable. On a 0-to-5 disease severity scale, ratings ranged from 0.67 (PI 566873) to 4.29 (PI 566883) within accessions of M. polymorpha. Most of the M. truncatula accessions were susceptible, with a mean of 3.74. Resistant reactions were similar to those found in incompatible interactions with P. medicaginis and alfalfa, which have been associated with specific genes leading to the production of isoflavonoid phytoalexins. The large genetic variability in annual Medicago spp. offers potential for locating and utilizing disease resistance genes through breeding or genetic engineering that will enhance the utilization of Medicago spp. as a forage crop.

9.
Mycologia ; 94(4): 630-40, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-21156536

RESUMO

The objectives of this study were to determine the phylogenetic relationships of species of Leptosphaeria and Phaeosphaeria and evaluate the phylogenetic significance of morphological characters of the teleomorph, anamorph, and host. Sequences of the entire ITS region, including the 5.8S rDNA, of 59 isolates representing 54 species were analyzed and the phylogeny inferred using parsimony and distance analyses. Isolates grouped into three well-supported clades. The results of this study support the separation of Phaeosphaeria from Leptosphaeria sensu stricto. Leptosphaeria bicolor and the morphologically similar Leptosphaeria taiwanensis formed a separate, well-supported clade. We conclude that peridial wall morphology, anamorph characteristics, and to a lesser extent host, are phylogenetically significant at the generic level. Ascospore and conidial morphology are taxonomically useful at the species level.

10.
Mycologia ; 94(4): 660-72, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-21156539

RESUMO

The phylogenetic relationships among 44 isolates representing 16 species of Stemphylium were inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase (gpd) sequence data. The results generally agree with morphological species concepts. There was strong support for monophyly of the genus Stemphylium. Analysis of the gpd fragment in particular was useful for establishing well-supported relationships among the species and isolates of Stemphylium. Species of Stemphylium that appear to have lost the ability to produce a sexual state are scattered among the species with the ability to reproduce sexually (Pleospora spp.). Species that are pathogenic to alfalfa are resolved into two groups. Stemphylium botryosum and two isolates with morphological characters similar to S. globuliferum had identical sequences at both loci. These two loci in S. vesicarium, S. alfalfae and S. herbarum are nearly identical but differ from S. botryosum. The separation of S. vesicarium, S. herbarum and S. alfalfae into separate species by morphometric evidence was not supported by the molecular data. Morphological and developmental characters such as size and shape of conidia, conidiophores, and ascospores, and size and time of maturation of pseudothecia are useful for diagnosing species. However, other morphological characters such as septum development and small variations in conidial wall ornamentation are not as useful.

11.
Plant Dis ; 86(11): 1247-1252, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30818476

RESUMO

Eighty-seven isolates of the sorghum ergot pathogen, Claviceps africana, from diverse geographic locations were analyzed using four different amplified fragment length polymorphism (AFLP) primer combinations to determine genetic relationships among isolates. Most isolates showed unique AFLP haplotypes, indicating that substantial genetic variation is present within C. africana populations. Two major groupings of isolates were observable, with ca. 70% similarity between the two groups. One group consisted of Australian, Indian, and Japanese isolates and the other of U.S., Mexican, and African isolates. In spite of overall high levels of genetic diversity observed in C. africana, isolates within the two major groups were between 75 and 100% similar. The observed associations of C. africana isolates from worldwide sources could be the result of intercontinental trade and/or movement of seed. The data indicate that Africa was the likely source of C. africana that has become established in the Americas since 1996. Analysis of additional isolates in future studies will reveal whether these groupings are being maintained or whether population subdivision or reshuffling may occur.

12.
Plant Dis ; 84(3): 261-267, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841239

RESUMO

The annual genus Medicago core collection, consisting of 201 accessions, represents the genetic diversity inherent in 3,159 accessions from 36 annual Medicago species. This germ plasm was evaluated for resistance to anthracnose caused by Colletotrichum trifolii. Anthracnose is a major disease in perennial alfalfa (Medicago sativa L.) grown in North America and disease control is based principally on the use of resistant varieties. Evaluation of the core collection was conducted using standardized environmental conditions in growth chambers, and included the M. sativa standard reference cvs. Arc (resistant) and Saranac (susceptible). The degree of resistance found among accessions within species was highly variable; however, most annual species and accessions were susceptible. Only 14 accessions from seven species exhibited resistance greater than 40% seedling survival. These included accessions of M. murex, M. muricoleptis, M. polymorpha var. brevispina, M. polymorpha var. polymorpha, M. radiata, M. soleirolii, M. truncatula, and M. turbinata. Of the 12 accessions of M. polymorpha var. polymorpha, 4 exhibited more than 50% resistance, but 3 accessions were 100% susceptible. Most of the M. truncatula and M. turbinata accessions exhibited significantly more resistance than accessions of other species. Plant introduction (PI) accession number PI 495401 of M. muricoleptis exhibited 90.3% resistance. Accessions of M. scutellata were uniformly susceptible. Histological examinations of 14 of the most anthracnose-resistant accessions revealed that C. trifolii spores germinated and produced typical appressoria, but failed to penetrate and produce the primary and secondary hyphae characteristic of susceptible interactions. Resistant reactions were similar to those found in incompatible interactions with C. trifolii and alfalfa, which have been associated with specific genes leading to the production of isoflavonoid phytoalexins. The large genetic variability in annual Medicago spp. offers potential for locating and utilizing disease resistance genes through breeding or genetic engineering that will enhance the utilization of Medicago spp. as a forage crop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...