Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(6): 4126-4146, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735056

RESUMO

INTRODUCTION: MODEL-AD (Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease) is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to capture the trajectory and progression of late-onset Alzheimer's disease (LOAD) more accurately. METHODS: We created the LOAD2 model by combining apolipoprotein E4 (APOE4), Trem2*R47H, and humanized amyloid-beta (Aß). Mice were subjected to a control diet or a high-fat/high-sugar diet (LOAD2+HFD). We assessed disease-relevant outcome measures in plasma and brain including neuroinflammation, Aß, neurodegeneration, neuroimaging, and multi-omics. RESULTS: By 18 months, LOAD2+HFD mice exhibited sex-specific neuron loss, elevated insoluble brain Aß42, increased plasma neurofilament light chain (NfL), and altered gene/protein expression related to lipid metabolism and synaptic function. Imaging showed reductions in brain volume and neurovascular uncoupling. Deficits in acquiring touchscreen-based cognitive tasks were observed. DISCUSSION: The comprehensive characterization of LOAD2+HFD mice reveals that this model is important for preclinical studies seeking to understand disease trajectory and progression of LOAD prior to or independent of amyloid plaques and tau tangles. HIGHLIGHTS: By 18 months, unlike control mice (e.g., LOAD2 mice fed a control diet, CD), LOAD2+HFD mice presented subtle but significant loss of neurons in the cortex, elevated levels of insoluble Ab42 in the brain, and increased plasma neurofilament light chain (NfL). Transcriptomics and proteomics showed changes in gene/proteins relating to a variety of disease-relevant processes including lipid metabolism and synaptic function. In vivo imaging revealed an age-dependent reduction in brain region volume (MRI) and neurovascular uncoupling (PET/CT). LOAD2+HFD mice also demonstrated deficits in acquisition of touchscreen-based cognitive tasks.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Proteínas tau , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/metabolismo , Sinapses/patologia , Sinapses/metabolismo , Masculino , Feminino , Humanos
2.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38187716

RESUMO

INTRODUCTION: MODEL-AD is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to more accurately mimic LOAD than commonly used transgenic models. METHODS: We created the LOAD2 model by combining APOE4, Trem2*R47H, and humanized amyloid-beta. Mice aged up to 24 months were subjected to either a control diet or a high-fat/high-sugar diet (LOAD2+HFD) from two months of age. We assessed disease-relevant outcomes, including in vivo imaging, biomarkers, multi-omics, neuropathology, and behavior. RESULTS: By 18 months, LOAD2+HFD mice exhibited cortical neuron loss, elevated insoluble brain Aß42, increased plasma NfL, and altered gene/protein expression related to lipid metabolism and synaptic function. In vivo imaging showed age-dependent reductions in brain region volume and neurovascular uncoupling. LOAD2+HFD mice also displayed deficits in acquiring touchscreen-based cognitive tasks. DISCUSSION: Collectively the comprehensive characterization of LOAD2+HFD mice reveal this model as important for preclinical studies that target features of LOAD independent of amyloid and tau.

4.
Front Aging Neurosci ; 13: 735524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707490

RESUMO

Late-onset Alzheimer's disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host.

5.
Front Aging Neurosci ; 13: 713726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366832

RESUMO

The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.

6.
BMC Genet ; 21(1): 101, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907542

RESUMO

BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.


Assuntos
Receptores de Complemento 3b/genética , Receptores de Complemento 3d/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transcriptoma
7.
PLoS Genet ; 15(5): e1008155, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150388

RESUMO

Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD.


Assuntos
Doença de Alzheimer/genética , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Selvagens/genética , Encéfalo/metabolismo , Variação Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide , Presenilina-1/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...