Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Genet ; 35: 341-64, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11700287

RESUMO

A central aspect of cellular function is the proper regulation of nucleocytoplasmic transport. In recent years, significant progress has been made in identifying and characterizing the essential components of the transport machinery. Despite these advances, some facets of this process are still unclear. Furthermore, recent work has uncovered novel molecules and mechanisms of nuclear transport. This review focuses on the unresolved and novel aspects of nuclear transport and explores issues in tRNA, snRNA, and mRNA export that highlight the diversity of nuclear transport mechanisms.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Poro Nuclear/metabolismo , RNA/metabolismo , Animais , Previsões , Humanos , Sinais de Localização Nuclear , Poro Nuclear/química , RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 98(22): 12578-83, 2001 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11675494

RESUMO

In addition to its well-established role in responding to phosphate starvation, the cyclin-dependent kinase Pho85 has been implicated in a number of other physiological responses of the budding yeast Saccharomyces cerevisiae, including synthesis of glycogen. To comprehensively characterize the range of Pho85-dependent gene expression, we used a chemical genetic approach that enabled us to control Pho85 kinase activity with a cell-permeable inhibitor and whole genome transcript profiling. We found significant phenotypic differences between the rapid loss of activity caused by inhibition and the deletion of the genomic copy of PHO85. We demonstrate that Pho85 controls the expression of not only previously identified glycogen synthetic genes, but also a significant regulon of genes involved in the cellular response to environmental stress. In addition, we show that the effects of this inhibitor are both rapid and reversible, making it well suited to the study of the behavior of dynamic signaling pathways.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Alelos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Meio Ambiente , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell Biol ; 21(19): 6695-705, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11533256

RESUMO

In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. A phosphate-responsive signal transduction pathway mediates this response by controlling the activity of the transcription factor Pho4. Three components of this signal transduction pathway resemble those used to regulate the eukaryotic cell cycle: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. Pho81 forms a stable complex with Pho80-Pho85 under both high- and low-phosphate conditions, but it only inhibits the kinase when cells are starved for phosphate. Pho81 contains six tandem repeats of the ankyrin consensus domain homologous to the INK4 family of mammalian CKIs. INK4 proteins inhibit kinase activity through an interaction of the ankyrin repeats and the CDK subunits. Surprisingly, we find that a region of Pho81 containing 80 amino acids C terminal to the ankyrin repeats is necessary and sufficient for Pho81's CKI function. The ankyrin repeats of Pho81 appear to have no significant role in Pho81 inhibition. Our results suggest that Pho81 inhibits Pho80-Pho85 with a novel motif.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Ciclina A/química , Ciclinas/química , Ciclinas/genética , Ciclinas/fisiologia , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Transcrição Gênica
4.
J Mol Biol ; 306(5): 997-1010, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11237614

RESUMO

As part of a nutrient-responsive signaling pathway, the budding yeast cyclin-CDK complex Pho80-Pho85 phosphorylates the transcription factor Pho4 on five sites and inactivates it. Here, we describe the kinetic reaction between Pho80-Pho85 and Pho4. Through experimentation and computer modeling we have determined that Pho80-Pho85 phosphorylates Pho4 in a semi-processive fashion that results from a balance between kcat and k(off). In addition, we show that Pho80-Pho85 phosphorylates certain sites preferentially. Phosphorylation of the site with the highest preference inhibits the transcriptional activity of Pho4 when it is in the nucleus, while phosphorylation of the lowest-preference sites is required for export of Pho4 from the nucleus. This method of phosphorylation may allow Pho80-Pho85 to quickly inactivate Pho4 in the nucleus and efficiently phosphorylate Pho4 to completion.


Assuntos
Sítios de Ligação , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Simulação por Computador , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Dipeptídeos/metabolismo , Escherichia coli/enzimologia , Proteínas Fúngicas/genética , Mutação , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tripsina/metabolismo
5.
Genetics ; 157(1): 39-51, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11139490

RESUMO

The Saccharomyces cerevisiae PHO85 gene encodes a nonessential cyclin-dependent kinase that associates with 10 cyclin subunits. To survey the functions provided by Pho85, we identified mutants that require PHO85 for viability. We identified mutations that define seven Pho Eighty-Five Requiring or Efr loci, six of which are previously identified genes-BEM2 (YER155C), SPT7 (YBR081C), GCR1 (YPL075W), SRB5 (YGR104C), HFI1 (YPL254W), and BCK1 (YJL095W)-with one novel gene (YMR212C). We found that mutations in the EFR genes involved in morphogenesis are specifically inviable when the Pho85-associated G1 cyclins encoded by PCL1 and PCL2 are absent. pcl1 Delta bem2, pcl1 Delta pcl2 Delta cla4 Delta, and pcl1 Delta pcl2 Delta cdc42-1 strains are inviable. pcl1 Delta pcl2 Delta mpk1 Delta, pcl1 Delta pcl2 Delta bck1, and pcl1 Delta pcl2 Delta cln1 Delta cln2 Delta strains are also inviable, but are rescued by osmotic stabilization with 1 m sorbitol. We propose that the G1 cyclins encoded by PCL1 and PCL2 positively regulate CDC42 or another morphogenesis promoting function.


Assuntos
Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Meios de Cultura , Ciclinas/genética , Genes Fúngicos , Mutagênese Insercional , Mutação , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sorbitol , Temperatura
6.
Genetics ; 159(4): 1491-9, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11779791

RESUMO

Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters.


Assuntos
Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Galactose/farmacologia , Genótipo , Glucose/farmacologia , Cinética , Microscopia de Fluorescência , Mutação , Fenótipo , Fosfatos/farmacocinética , Plasmídeos/metabolismo , Transporte Proteico , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais
7.
J Cell Biol ; 151(4): 863-78, 2000 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-11076970

RESUMO

De novo biosynthesis of amino acids uses intermediates provided by the TCA cycle that must be replenished by anaplerotic reactions to maintain the respiratory competency of the cell. Genome-wide expression analyses in Saccharomyces cerevisiae reveal that many of the genes involved in these reactions are repressed in the presence of the preferred nitrogen sources glutamine or glutamate. Expression of these genes in media containing urea or ammonia as a sole nitrogen source requires the heterodimeric bZip transcription factors Rtg1 and Rtg3 and correlates with a redistribution of the Rtg1p/Rtg3 complex from a predominantly cytoplasmic to a predominantly nuclear location. Nuclear import of the complex requires the cytoplasmic protein Rtg2, a previously identified upstream regulator of Rtg1 and Rtg3, whereas export requires the importin-beta-family member Msn5. Remarkably, nuclear accumulation of Rtg1/Rtg3, as well as expression of their target genes, is induced by addition of rapamycin, a specific inhibitor of the target of rapamycin (TOR) kinases. We demonstrate further that Rtg3 is a phosphoprotein and that its phosphorylation state changes after rapamycin treatment. Taken together, these results demonstrate that target of rapamycin signaling regulates specific anaplerotic reactions by coupling nitrogen quality to the activity and subcellular localization of distinct transcription factors.


Assuntos
Proteínas Fúngicas/metabolismo , Nitrogênio/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Aminoácidos/biossíntese , Amônia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteínas de Ciclo Celular , Mapeamento Cromossômico , Ciclo do Ácido Cítrico , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas Fúngicas/antagonistas & inibidores , Regulação Fúngica da Expressão Gênica , Genótipo , Glutamina/metabolismo , Sequências Hélice-Alça-Hélice , Fases de Leitura Aberta , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Ureia/metabolismo
8.
Curr Opin Cell Biol ; 12(3): 355-60, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10801461

RESUMO

The compartmentalization of DNA in the nucleus of eukaryotic cells establishes a connection between the nuclear transport machinery and the transcriptional apparatus. General transcription factors, as well as specific transcriptional activators and repressors, such as p53 and NF-AT, need to be imported into the nucleus following their translation. In addition, nuclear transport plays a crucial role in regulating the activity of many transcription factors.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Transcrição Gênica , Transporte Biológico Ativo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Fatores de Transcrição NFATC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box , Fator de Transcrição TFIIA , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Proc Natl Acad Sci U S A ; 97(3): 1107-12, 2000 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-10655492

RESUMO

In the budding yeast Saccharomyces cerevisiae, PHO84 and PHO86 are among the genes that are most highly induced in response to phosphate starvation. They are essential for growth when phosphate is limiting, and they function in the high-affinity phosphate uptake system. PHO84 encodes a high-affinity phosphate transporter, and mutations in PHO86 cause many of the same phenotypes as mutations in PHO84, including a phosphate uptake defect and constitutive expression of the secreted acid phosphatase, Pho5p. Here, we show that the subcellular localization of Pho84p is regulated in response to extracellular phosphate levels; it is localized to the plasma membrane in low-phosphate medium but quickly endocytosed and transported to the vacuole upon addition of phosphate to the medium. Moreover, Pho84p is localized to the endoplasmic reticulum (ER) and fails to be targeted to the plasma membrane in the absence of Pho86p. Utilizing an in vitro vesicle budding assay, we demonstrate that Pho86p is required for packaging of Pho84p into COPII vesicles. Pho86p is an ER resident protein, which itself is not transported out of the ER. Interestingly, the requirement of Pho86p for ER exit is specific to Pho84p, because other members of the hexose transporter family to which Pho84 belongs are not mislocalized in the absence of Pho86p.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Membrana/fisiologia , Simportadores de Próton-Fosfato , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Transporte Biológico , Transporte de Íons , Microscopia de Fluorescência , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Esferoplastos/metabolismo , Proteínas de Transporte Vesicular
11.
Annu Rev Cell Dev Biol ; 15: 291-339, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10611964

RESUMO

Information can be transferred between the nucleus and the cytoplasm by translocating macromolecules across the nuclear envelope. Communication of extracellular or intracellular changes to the nucleus frequently leads to a transcriptional response that allows cells to survive in a continuously changing environment. Eukaryotic cells have evolved ways to regulate this movement of macromolecules between the cytoplasm and the nucleus such that the transfer of information occurs only under conditions in which a transcriptional response is required. This review focuses on the ways in which cells regulate movement of proteins across the nuclear envelope and the significance of this regulation for controlling diverse biological processes.


Assuntos
Núcleo Celular/metabolismo , Animais , Transporte Biológico , Humanos , Sinais de Localização Nuclear/fisiologia
12.
Science ; 284(5416): 977-80, 1999 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-10320381

RESUMO

Transcription factors are often phosphorylated at multiple sites. Here it is shown that multiple phosphorylation sites on the budding yeast transcription factor Pho4 play distinct and separable roles in regulating the factor's activity. Phosphorylation of Pho4 at two sites promotes the factor's nuclear export and phosphorylation at a third site inhibits its nuclear import. Phosphorylation of a fourth site blocks the interaction of Pho4 with the transcription factor Pho2. Multiple phosphorylation sites provide overlapping and partially redundant layers of regulation that function to efficiently control the activity of Pho4.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio , Proteínas de Membrana Transportadoras , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fosfatase Ácida/metabolismo , Substituição de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/genética , Carioferinas , Sinais de Localização Nuclear , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
13.
Mol Cell Biol ; 19(4): 2817-27, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10082547

RESUMO

The Saccharomyces cerevisiae gene PHO5 is an excellent system with which to study regulated changes in chromatin structure. The PHO5 promoter is packaged into four positioned nucleosomes under repressing conditions; upon induction, the structure of these nucleosomes is altered such that the promoter DNA becomes accessible to nucleases. We report here the development and characterization of an in vitro system in which partially purified PHO5 minichromosomes undergo promoter chromatin remodeling. Several hallmarks of the PHO5 chromatin transition in vivo were reproduced in this system. Chromatin remodeling of PHO5 minichromosomes required the transcription factors Pho4 and Pho2, was localized to the promoter region of PHO5, and was independent of the chromatin-remodeling complex Swi-Snf. In vitro chromatin remodeling also required the addition of fractionated nuclear extract and hydrolyzable ATP. This in vitro system should serve as a useful tool for identifying the components required for this reaction and for elucidating the mechanism by which the PHO5 promoter chromatin structure is changed.


Assuntos
Fosfatase Ácida/genética , Cromatina/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA , Proteínas de Homeodomínio , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Sistema Livre de Células , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Nucleossomos/metabolismo , Plasmídeos , Saccharomyces cerevisiae/enzimologia , Frações Subcelulares/metabolismo , Transativadores/metabolismo
14.
Nature ; 396(6710): 482-6, 1998 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-9853758

RESUMO

The movement of many transcription factors, kinases and replication factors between the nucleus and cytoplasm is important in regulating their activity. In some cases, phosphorylation of a protein regulates its entry into the nucleus; in others, it causes the protein to be exported to the cytoplasm. The mechanism by which phosphorylation promotes protein export from the nucleus is poorly understood. Here we investigate how the export of the yeast transcription factor Pho4 is regulated in response to changes in phosphate availability. We show that phosphorylation of Pho4 by a nuclear complex of a cyclin with a cyclin-dependent kinase, Pho80-Pho85, triggers its export from the nucleus. We also find that the shuttling receptor used by Pho4 for nuclear export is the importin-beta-family member Msn5, which is required for nuclear export of Pho4 in vivo and binds only to phosphorylated Pho4 in the presence of the GTP-bound form of yeast Ran in vitro. Our results reveal a simple mechanism by which phosphorylation can control the nuclear export of a protein.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Transporte Biológico , Clonagem Molecular , Citoplasma/metabolismo , Escherichia coli , GTP Fosfo-Hidrolases/metabolismo , Carioferinas , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína ran de Ligação ao GTP
15.
Genetics ; 150(4): 1349-59, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9832515

RESUMO

In the yeast Saccharomyces cerevisiae, transcription of a secreted acid phosphatase, PHO5, is repressed in response to high concentrations of extracellular inorganic phosphate. To investigate the signal transduction pathway leading to transcriptional regulation of PHO5, we carried out a genetic selection for mutants that express PHO5 constitutively. We then screened for mutants whose phenotypes are also dependent on the function of PHO81, which encodes an inhibitor of the Pho80p-Pho85p cyclin/cyclin-dependent kinase complex. These mutations are therefore likely to impair upstream functions in the signaling pathway, and they define five complementation groups. Mutations were found in a gene encoding a plasma membrane ATPase (PMA1), in genes required for the in vivo function of the phosphate transport system (PHO84 and PHO86), in a gene involved in the fatty acid synthesis pathway (ACC1), and in a novel, nonessential gene (PHO23). These mutants can be classified into two groups: pho84, pho86, and pma1 are defective in high-affinity phosphate uptake, whereas acc1 and pho23 are not, indicating that the two groups of mutations cause constitutive expression of PHO5 by distinct mechanisms. Our observations suggest that these gene products affect different aspects of the signal transduction pathway for PHO5 repression.


Assuntos
Fosfatase Ácida/genética , Proteínas de Transporte , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Acetiltransferases/genética , Proteínas Adaptadoras de Transporte Vesicular , Alelos , Ácidos Graxos/metabolismo , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Mutagênese , Fenótipo , Fosfatos/metabolismo , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica
16.
Genes Dev ; 12(17): 2673-83, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9732266

RESUMO

The transcription factor Pho4 is phosphorylated and localized predominantly to the cytoplasm when budding yeast are grown in phosphate-rich medium and is unphosphorylated and localized to the nucleus upon phosphate starvation. We have investigated the requirements for nuclear import of Pho4 and find that Pho4 enters the nucleus via a nonclassical import pathway that utilizes the importin beta family member Pse1/Kap121. Pse1 binds directly to Pho4 and is required for its import in vivo. We have defined the nuclear localization signal on Pho4 and demonstrate that it is required for Pse1 binding in vitro and is sufficient for PSE1-dependent import in vivo. Phosphorylation of Pho4 inhibits its interaction with Pse1, providing a mechanism by which phosphorylation may regulate import of Pho4 in vivo.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Clonagem Molecular , Citoplasma/metabolismo , Escherichia coli , Cinética , Fosfatos/metabolismo , Fosforilação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
18.
Trends Biochem Sci ; 21(10): 383-7, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8918192

RESUMO

Phosphate starvation induces the transcription of several genes involved in phosphate metabolism in the budding yeast Saccharomyces cerevisiae. The signal transduction pathway that mediates this response consists of components that resemble those used to regulate the eukaryotic cell cycle; these include a cyclin-dependent kinase or CDK (Pho85), a cyclin (Pho80) and a CDK inhibitor (Pho81). The possibility that this pathway mediates cell-cycle responses to phosphate starvation is discussed.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Fosforilação , Transdução de Sinais/fisiologia
19.
Science ; 271(5246): 209-12, 1996 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-8539622

RESUMO

PHO4, a transcription factor required for induction of the PHO5 gene in response to phosphate starvation, is phosphorylated by the PHO80-PHO85 cyclin-CDK (cyclin-dependent kinase) complex when yeast are grown in phosphate-rich medium. PHO4 was shown to be concentrated in the nucleus when yeast were starved for phosphate and was predominantly cytoplasmic when yeast were grown in phosphate-rich medium. The sites of phosphorylation on PHO4 were identified, and phosphorylation was shown to be required for full repression of PHO5 transcription when yeast were grown in high phosphate. Thus, phosphorylation of PHO4 by PHO80-PHO85 turns off PHO5 transcription by regulating the nuclear localization of PHO4.


Assuntos
Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Citoplasma/metabolismo , Dipeptídeos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Fosfatos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...