Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(4): 421-435, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030380

RESUMO

IL12 is a proinflammatory cytokine, that has shown promising antitumor activity in humans by promoting the recruitment and activation of immune cells in tumors. However, the systemic administration of IL12 has been accompanied by considerable toxicity, prompting interest in researching alternatives to drive preferential IL12 bioactivity in the tumor. Here, we have generated XTX301, a tumor-activated IL12 linked to the human Fc protein via a protease cleavable linker that is pharmacologically inactivated by an IL12 receptor subunit beta 2 masking domain. In vitro characterization demonstrates multiple matrix metalloproteases, as well as human primary tumors cultured as cell suspensions, can effectively activate XTX301. Intravenous administration of a mouse surrogate mXTX301 demonstrated significant tumor growth inhibition (TGI) in inflamed and non-inflamed mouse models without causing systemic toxicities. The superiority of mXTX301 in mediating TGI compared with non-activatable control molecules and the greater percentage of active mXTX301 in tumors versus other organs further confirms activation by the tumor microenvironment-associated proteases in vivo. Pharmacodynamic characterization shows tumor selective increases in inflammation and upregulation of immune-related genes involved in IFNγ cell signaling, antigen processing, presentation, and adaptive immune response. XTX301 was tolerated following four repeat doses up to 2.0 mg/kg in a nonhuman primate study; XTX301 exposures were substantially higher than those at the minimally efficacious dose in mice. Thus, XTX301 has the potential to achieve potent antitumor activity while widening the therapeutic index of IL12 treatment and is currently being evaluated in a phase I clinical trial.


Assuntos
Interleucina-12 , Neoplasias , Humanos , Camundongos , Animais , Interleucina-12/metabolismo , Neoplasias/tratamento farmacológico , Citocinas , Transdução de Sinais , Índice Terapêutico , Microambiente Tumoral
2.
J Immunother Cancer ; 11(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164757

RESUMO

INTRODUCTION: The clinical benefit of the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab has been well established but limited by immune-related adverse events, especially when ipilimumab is used in combination with anti-PD-(L)1 mAb therapy. To overcome these limitations, we have developed XTX101, a tumor-activated, Fc-enhanced anti-CTLA-4 mAb. METHODS: XTX101 consists of an anti-human CTLA-4 mAb covalently linked to masking peptides that block the complementarity-determining regions, thereby minimizing the mAb binding to CTLA-4. The masking peptides are designed to be released by proteases that are typically dysregulated within the tumor microenvironment (TME), resulting in activation of XTX101 intratumorally. Mutations within the Fc region of XTX101 were included to enhance affinity for FcγRIII, which is expected to enhance potency through antibody-dependent cellular cytotoxicity. RESULTS: Biophysical, biochemical, and cell-based assays demonstrate that the function of XTX101 depends on proteolytic activation. In human CTLA-4 transgenic mice, XTX101 monotherapy demonstrated significant tumor growth inhibition (TGI) including complete responses, increased intratumoral CD8+T cells, and regulatory T cell depletion within the TME while maintaining minimal pharmacodynamic effects in the periphery. XTX101 in combination with anti-PD-1 mAb treatment resulted in significant TGI and was well tolerated in mice. XTX101 was activated in primary human tumors across a range of tumor types including melanoma, renal cell carcinoma, colon cancer and lung cancer in an ex vivo assay system. CONCLUSIONS: These data demonstrate that XTX101 retains the full potency of an Fc-enhanced CTLA-4 antagonist within the TME while minimizing the activity in non-tumor tissue, supporting the further evaluation of XTX101 in clinical studies.


Assuntos
Antineoplásicos , Melanoma , Humanos , Camundongos , Animais , Antígeno CTLA-4 , Ipilimumab/uso terapêutico , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Melanoma/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Transgênicos , Peptídeos/uso terapêutico , Microambiente Tumoral
3.
Respir Physiol Neurobiol ; 260: 70-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30439529

RESUMO

Chronic exposure to intermittent hyperoxia causes abnormal carotid body development and attenuates the hypoxic ventilatory response (HVR) in neonatal rats. We hypothesized that concurrent exposure to intermittent hypercapnic hypoxia would influence this plasticity. Newborn rats were exposed to alternating bouts of hypercapnic hypoxia (10% O2/6% CO2) and hyperoxia (30-40% O2) (5 cycles h-1, 24 h d-1) through 13-14 days of age; the experiment was run twice, once in a background of 21% O2 and once in a background of 30% O2 (i.e., "relative hyperoxia"). Hyperoxia had only small effects on carotid body development when combined with intermittent hypercapnic hypoxia: the carotid chemoafferent response to hypoxia was reduced, but this did not affect the HVR. In contrast, sustained exposure to 30% O2 reduced carotid chemoafferent activity and carotid body size which resulted in a blunted HVR. When given alone, chronic intermittent hypercapnic hypoxia increased carotid body size and reduced the hypercapnic ventilatory response but did not affect the HVR. Overall, it appears that intermittent hypercapnic hypoxia counteracted the effects of hyperoxia on the carotid body and prevented developmental plasticity of the HVR.


Assuntos
Hipercapnia/fisiopatologia , Hiperóxia/fisiopatologia , Ventilação Pulmonar/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Gasometria , Corpo Carotídeo/patologia , Corpo Carotídeo/fisiopatologia , Feminino , Hemoglobinas/metabolismo , Pulmão/patologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...