Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Neurophysiol ; 163: 280-291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679530

RESUMO

A significant amount of European basic and clinical neuroscience research includes the use of transcranial magnetic stimulation (TMS) and low intensity transcranial electrical stimulation (tES), mainly transcranial direct current stimulation (tDCS). Two recent changes in the EU regulations, the introduction of the Medical Device Regulation (MDR) (2017/745) and the Annex XVI have caused significant problems and confusions in the brain stimulation field. The negative consequences of the MDR for non-invasive brain stimulation (NIBS) have been largely overlooked and until today, have not been consequently addressed by National Competent Authorities, local ethical committees, politicians and by the scientific communities. In addition, a rushed bureaucratic decision led to seemingly wrong classification of NIBS products without an intended medical purpose into the same risk group III as invasive stimulators. Overregulation is detrimental for any research and for future developments, therefore researchers, clinicians, industry, patient representatives and an ethicist were invited to contribute to this document with the aim of starting a constructive dialogue and enacting positive changes in the regulatory environment.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Pesquisa Biomédica , Aprovação de Equipamentos/legislação & jurisprudência , Europa (Continente) , União Europeia , Legislação de Dispositivos Médicos , Estimulação Magnética Transcraniana/métodos
3.
Brain Stimul ; 16(4): 1178-1185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37543172

RESUMO

BACKGROUND: Intermittent theta-burst stimulation (i) (TBS) is a transcranial magnetic stimulation (TMS) plasticity protocol. Conventionally, TBS is applied using biphasic pulses due to hardware limitations. However, monophasic pulses are hypothesised to recruit cortical neurons more selectively than biphasic pulses, predicting stronger plasticity effects. Monophasic and biphasic TBS can be generated using a custom-made pulse-width modulation-based TMS device (pTMS). OBJECTIVE: Using pTMS, we tested the hypothesis that monophasic iTBS would induce a stronger plasticity effect than biphasic, measured as induced increases in motor corticospinal excitability. METHODS: In a repeated-measures design, thirty healthy volunteers participated in three separate sessions, where monophasic and biphasic iTBS was applied to the primary motor cortex (M1 condition) or the vertex (control condition). Plasticity was quantified as increases in motor corticospinal excitability after versus before iTBS, by comparing peak-to-peak amplitudes of motor evoked potentials (MEP) measured at baseline and over 60 min after iTBS. RESULTS: Both monophasic and biphasic M1 iTBS led to significant increases in MEP amplitude. As predicted, linear mixed effects (LME) models showed that the iTBS condition had a significant effect on the MEP amplitude (χ2 (1) = 27.615, p < 0.001) with monophasic iTBS leading to significantly stronger plasticity than biphasic iTBS (t (693) = 2.311, p = 0.021). Control vertex iTBS had no effect. CONCLUSIONS: In this study, monophasic iTBS induced a stronger motor corticospinal excitability increase than biphasic within participants. This greater physiological effect suggests that monophasic iTBS may also have potential for greater functional impact, of interest for future fundamental and clinical applications of TBS.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Ritmo Teta/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Plasticidade Neuronal/fisiologia
6.
Neuroimage ; 271: 120029, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925089

RESUMO

Work in computational psychiatry suggests that mood disorders may stem from aberrant reinforcement learning processes. Specifically, it has been proposed that depressed individuals believe that negative events are more informative than positive events, resulting in higher learning rates from negative outcomes (Pulcu and Browning, 2019). In this proof-of-concept study, we investigated whether transcranial direct current stimulation (tDCS) applied to dorsolateral prefrontal cortex, as commonly used in depression treatment trials, might change learning rates for affective outcomes. Healthy adults completed an established reinforcement learning task (Pulcu and Browning, 2017) in which the information content of reward and loss outcomes was manipulated by varying the volatility of stimulus-outcome associations. Learning rates on the tasks were quantified using computational models. Stimulation over dorsolateral prefrontal cortex (DLPFC) but not motor cortex (M1) increased learning rates specifically for reward outcomes. The effects of prefrontal tDCS were cognitive state-dependent: tDCS applied during task performance increased learning rates for wins; tDCS applied before task performance decreased both win and loss learning rates. A replication study confirmed the key finding that tDCS to DLPFC during task performance increased learning rates specifically for rewards. Taken together, these findings demonstrate the potential of tDCS for modulating computational parameters of reinforcement learning that are relevant to mood disorders.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal/fisiologia , Aprendizagem , Córtex Motor/fisiologia , Recompensa
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1715-1718, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085882

RESUMO

This study models and investigates whether temporally interfering electric fields (TI EFs) could function as an effective non-invasive brain stimulation (NIBS) method for deep brain structure targeting in humans, relevant for psychiatric applications. Here, electric fields off- and on-target are modelled and compared with other common NIBS modalities (tACS, TMS). Additionally, local effects of the field strength are modelled on single-compartment neuronal models. While TI EFs are able to effectively reach deep brain targets, the ratio of off- to on-target stimulation remains high and comparable to other NIBS and may result in off-target neural blocks. Clinical Relevance- This study builds on earlier work and demonstrates some of the challenges -such as off-target conduction blocks- of applying TI EFs for targeting deep brain structures important in understanding the potential of treating neuropsychiatric conditions in the future.


Assuntos
Encéfalo , Técnicas Estereotáxicas , Citoesqueleto , Eletricidade , Modelos Epidemiológicos , Humanos
9.
Expert Rev Neurother ; 22(6): 513-523, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642516

RESUMO

BACKGROUND: Transcranial electrical stimulation (tES) is considered effective and safe for depression, albeit modestly, and prone to logistical burdens when performed in external facilities. Investigation of portable tES (ptES), and potentiation of ptES with remote psychological interventions have shown positive, but preliminary, results. RESEARCH DESIGN: We report the rationale and design of an ongoing multi-arm, randomized, double-blind, sham-controlled clinical trial with digital features, using ptES and internet-based behavioral therapy (iBT) for major depressive disorder (MDD) (NCT04889976). METHODS: We will evaluate the efficacy, safety, tolerability and usability of (1) active ptES + active iBT ('double-active'), (2) active ptES + sham iBT ('ptES-only'), and (3) sham ptES + sham iBT ('double-sham'), in adults with MDD, with a Hamilton Depression Rating Scale - 17 item version (HDRS-17) score ≥ 17 at baseline, during 6 weeks. Antidepressants are allowed in stable doses during the trial. RESULTS: We primarily co-hypothesize changes in HDRS-17 will be greater in (1) 'double-active' compared to 'ptES-only,' (2) 'double-active' compared to 'double-sham,' and (3) 'ptES-only' compared to 'double-sham.' We aim to enroll 210 patients (70 per arm). CONCLUSIONS: Our results should offer new insights regarding the efficacy and scalability of combined ptES and iBT for MDD, in digital mental health.


Assuntos
Transtorno Depressivo Maior , Estimulação Transcraniana por Corrente Contínua , Adulto , Terapia Comportamental , Depressão , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Maior/terapia , Método Duplo-Cego , Humanos , Internet , Ensaios Clínicos Controlados Aleatórios como Assunto , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6058-6061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892498

RESUMO

In this study, the neural response to pulse-width modulated (PWM) transcranial magnetic stimulation (TMS) is estimated using a computational neural model which simulates the response of cortical neurons to TMS. The recently introduced programmable TMS uses PWM to approximate conventional resonance-based TMS pulses by fast switching between voltage levels. The effect of such stimulation on the six cortical layers is modelled by estimating the activation threshold of the neurons. Modelling results are compared between the novel device and that of conventional TMS stimuli generated by Magstim stimulators. The neural responses to the PWM pulses and the conventional stimuli show a high correlation, which validates the use of pulse-width modulated pulses in TMS.Clinical Relevance- This computational modelling study demonstrates an equivalent effect of PWM and conventional TMS pulses on the nervous system which paves the way to more flexibility in exploring and choosing stimulation parameters for TMS treatment.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Potencial Evocado Motor , Frequência Cardíaca , Neurônios
11.
Cognit Ther Res ; 45(5): 869-884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720259

RESUMO

BACKGROUND: Cognitive models of mood disorders emphasize a causal role of negative affective biases in depression. Computational work suggests that these biases may stem from a belief that negative events have a higher information content than positive events, resulting in preferential processing of and learning from negative outcomes. Learning biases therefore represent a promising target for therapeutic interventions. In this proof-of-concept study in healthy volunteers, we assessed the malleability of biased reinforcement learning using a novel cognitive training paradigm and concurrent transcranial direct current stimulation (tDCS). METHODS: In two studies, young healthy adults completed two sessions of negative (n = 20) or positive (n = 20) training designed to selectively increase learning from loss or win outcomes, respectively. During training active or sham tDCS was applied bilaterally to dorsolateral prefrontal cortex. Analyses tested for changes both in learning rates and win- and loss-driven behaviour. Potential positive/negative emotional transfer of win/loss learning was assessed by a facial emotion recognition task and mood questionnaires. RESULTS: Negative and positive training increased learning rates for losses and wins, respectively. With negative training, there was also a trend for win (but not loss) learning rates to decrease over successive task blocks. After negative training, there was evidence for near transfer in the form of an increase in loss-driven choices when participants performed a similar (untrained) task. There was no change in far transfer measures of emotional face processing or mood. tDCS had no effect on any aspect of behaviour. DISCUSSION AND CONCLUSIONS: Negative training induced a mild negative bias in healthy adults as reflected in loss-driven choice behaviour. Prefrontal tDCS had no effect. Further research is needed to assess if this training procedure can be adapted to enhance learning from positive outcomes and whether effects translate to affective disorders.

12.
Neuroimage ; 245: 118681, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728243

RESUMO

Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.


Assuntos
Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Potencial Evocado Motor , Humanos , Inibição Psicológica , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Destreza Motora , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico
13.
Braz J Psychiatry ; 42(4): 403-419, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32187319

RESUMO

Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges and opportunities in implementing such a framework, focusing on enhancing NIN effects via a combination of individualized cognitive interventions, using closed-loop approaches, identifying multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage, and using machine learning algorithms to integrate data collected at multiple biological levels and identify clinical responders. Though promising, this framework is currently limited, as previous studies have employed small samples and did not sufficiently explore pathophysiological mechanisms associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a more "precision-oriented" practice.


Assuntos
Estimulação Encefálica Profunda/métodos , Depressão/prevenção & controle , Depressão/reabilitação , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana/métodos , Encéfalo , Transtorno Depressivo Maior/fisiopatologia , Humanos , Resultado do Tratamento
14.
Hum Brain Mapp ; 41(7): 1950-1967, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31872943

RESUMO

Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.


Assuntos
Imageamento por Ressonância Magnética/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Humanos , Desempenho Psicomotor/fisiologia
15.
JAMA Psychiatry ; 76(1): 71-78, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347011

RESUMO

Importance: Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) is under clinical investigation as a treatment for major depressive disorder. However, the mechanisms of action are unclear, and there is a lack of neuroimaging evidence, particularly among individuals with affective dysfunction. Furthermore, there is no direct causal evidence among humans that the prefrontal-amygdala circuit functions as described in animal models (ie, that increasing activity in prefrontal cortical control regions inhibits amygdala response to threat). Objective: To determine whether stimulation of the prefrontal cortex reduces amygdala threat reactivity in individuals with trait anxiety. Design, Setting, and Participants: This community-based randomized clinical trial used a double-blind, within-participants design (2 imaging sessions per participant). Eighteen women with high trait anxiety (age range, 18-42 years) who scored greater than 45 on the trait measure of State-Trait Anxiety Inventory were randomized to receive active or sham tDCS of the DLPFC during the first session and the other intervention during the next session. Each intervention was followed immediately by a functional imaging scan during which participants performed an attentional task requiring them to ignore threatening face distractors. Data were collected from May 7 to October 6, 2015. Main Outcomes and Measures: Amygdala threat response, measured with functional magnetic resonance imaging. Results: Data from 16 female participants (mean age, 23 years; range, 18-42 years), with 8 in each group, were analyzed. Compared with sham stimulation, active DLPFC stimulation significantly reduced bilateral amygdala threat reactivity (z = 3.30, P = .04) and simultaneously increased activity in cortical regions associated with attentional control (z = 3.28, P < .001). In confirmatory behavioral analyses, there was a mean improvement in task accuracy of 12.2% (95% CI, 0.30%-24.0%; mean [SD] difference in number of correct answers, 2.2 [4.5]; t15 = 1.94, P = .04) after active DLPFC stimulation. Conclusions and Relevance: These results reveal a causal role for prefrontal regulation of amygdala function in attentional capture by threat in individuals with high trait anxiety. The finding that prefrontal stimulation acutely increases attentional control signals and reduces amygdala threat reactivity may indicate a neurocognitive mechanism that could contribute to tDCS treatment effects in affective disorders. Trial Registration: isrctn.org Identifier: ISRCTN78638425.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Atenção/fisiologia , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Inibição Neural/fisiologia , Vias Neurais/fisiopatologia , Neuroimagem , Adulto Jovem
16.
Ann Neurol ; 85(1): 59-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383312

RESUMO

OBJECTIVE: Phantom limb pain (PLP) is notoriously difficult to treat, partly due to an incomplete understanding of PLP-related disease mechanisms. Noninvasive brain stimulation (NIBS) is used to modulate plasticity in various neuropathological diseases, including chronic pain. Although NIBS can alleviate neuropathic pain (including PLP), both disease and treatment mechanisms remain tenuous. Insight into the mechanisms underlying both PLP and NIBS-induced PLP relief is needed for future implementation of such treatment and generalization to related conditions. METHODS: We used a within-participants, double-blind, and sham-controlled design to alleviate PLP via task-concurrent NIBS over the primary sensorimotor missing hand cortex (S1/M1). To specifically influence missing hand signal processing, amputees performed phantom hand movements during anodal transcranial direct current stimulation. Brain activity was monitored using neuroimaging during and after NIBS. PLP ratings were obtained throughout the week after stimulation. RESULTS: A single session of intervention NIBS significantly relieved PLP, with effects lasting at least 1 week. PLP relief associated with reduced activity in the S1/M1 missing hand cortex after stimulation. Critically, PLP relief and reduced S1/M1 activity correlated with preceding activity changes during stimulation in the mid- and posterior insula and secondary somatosensory cortex (S2). INTERPRETATION: The observed correlation between PLP relief and decreased S1/M1 activity confirms our previous findings linking PLP with increased S1/M1 activity. Our results further highlight the driving role of the mid- and posterior insula, as well as S2, in modulating PLP. Lastly, our novel PLP intervention using task-concurrent NIBS opens new avenues for developing treatment for PLP and related pain conditions. ANN NEUROL 2019;85:59-73.


Assuntos
Amputados , Manejo da Dor/métodos , Membro Fantasma/fisiopatologia , Membro Fantasma/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Membro Fantasma/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Adulto Jovem
17.
Sci Rep ; 8(1): 3312, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459720

RESUMO

Motivational, cognitive and action goals are processed by distinct, topographically organized, corticostriatal circuits. We aimed to test whether processing in the striatum is under causal control by cortical regions in the human brain by investigating the effects of offline transcranial magnetic stimulation (TMS) over distinct frontal regions associated with motivational, cognitive and action goal processing. Using a three-session counterbalanced within-subject crossover design, continuous theta burst stimulation was applied over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex, or premotor cortex, immediately after which participants (N = 27) performed a paradigm assessing reward anticipation (motivation), task (cognitive) switching, and response (action) switching. Using task-related functional magnetic resonance imaging (fMRI), we assessed the effects of stimulation on processing in distinct regions of the striatum. To account for non-specific effects, each session consisted of a baseline (no-TMS) and a stimulation (post-TMS) fMRI run. Stimulation of the aPFC tended to decrease reward-related processing in the caudate nucleus, while stimulation of the other sites was unsuccessful. A follow-up analysis revealed that aPFC stimulation also decreased processing in the putamen as a function of the interaction between all factors (reward, cognition and action), suggesting stimulation modulated the transfer of motivational information to cortico-striatal circuitry associated with action control.


Assuntos
Cognição/fisiologia , Corpo Estriado/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Masculino , Motivação/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
18.
Neuropsychologia ; 115: 188-203, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29248498

RESUMO

Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiopatologia , Transtornos da Percepção/fisiopatologia , Percepção Espacial/fisiologia , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Modelos Biológicos , Transtornos da Percepção/reabilitação , Estimulação Luminosa , Desempenho Psicomotor
19.
Front Neurosci ; 12: 1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30705617

RESUMO

Background: Human visual cortical area hMT+, like its homolog MT in the macaque monkey, has been shown to be particularly selective to visual motion. After damage to the primary visual cortex (V1), patients often exhibit preserved ability to detect moving stimuli, which is associated with neural activity in area hMT+. As an anatomical substrate that underlies residual function in the absence of V1, promoting functional plasticity within hMT+ could potentially boost visual performance despite primary visual cortical damage. Objective: To establish in healthy participants whether it is possible to use transcranial direct current stimulation (tDCS) over hMT+ to potentiate learning of visual motion direction discrimination. Methods: Twenty-one participants were trained daily for 5 days on a visual motion direction discrimination task. Task difficulty was increased as performance improved, by decreasing the proportion of coherently moving dots, such that participants were always performing at psychophysical threshold. tDCS, either anodal or sham, was applied daily during 20 min of training. Task performance was assessed at baseline and at the end of the training period. Performance was also compared with a third group of 10 participants from an earlier study who had undergone the same procedures but without tDCS. Results: All participants showed improved task performance both during and after training. Contrary to our hypothesis, anodal tDCS did not further improve performance compared to sham stimulation or no stimulation. Bayesian statistics indicated weak evidence in favor of the null hypothesis. Conclusion: This study found no evidence for a robust effect of anodal tDCS over hMT+ on visual motion direction discrimination learning in the young healthy visual system, although more subtle effects may have been missed in the relatively small sample size.

20.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893377

RESUMO

Right brain injury causes visual neglect - lost awareness of left space. During prism adaptation therapy, patients adapt to a rightward optical shift by recalibrating right arm movements leftward. This can improve left neglect, but the benefit of a single session is transient (~1 day). Here we show that tonic disinhibition of left motor cortex during prism adaptation enhances consolidation, stabilizing both sensorimotor and cognitive prism after-effects. In three longitudinal patient case series, just 20 min of combined stimulation/adaptation caused persistent cognitive after-effects (neglect improvement) that lasted throughout follow-up (18-46 days). Moreover, adaptation without stimulation was ineffective. Thus stimulation reversed treatment resistance in chronic visual neglect. These findings challenge consensus that because the left hemisphere in neglect is pathologically over-excited it ought to be suppressed. Excitation of left sensorimotor circuits, during an adaptive cognitive state, can unmask latent plastic potential that durably improves resistant visual attention deficits after brain injury.


Assuntos
Plasticidade Neuronal/fisiologia , Transtornos da Percepção/fisiopatologia , Córtex Sensório-Motor/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Atenção/fisiologia , Lesões Encefálicas , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Rede Nervosa , Testes Neuropsicológicos , Transtornos da Percepção/reabilitação , Transtornos da Percepção/terapia , Recuperação de Função Fisiológica/fisiologia , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...