Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803583

RESUMO

Unionoid freshwater mussels (Bivalvia: Unionidae) are free-living apart from a brief, obligately parasitic, larval stage that infects fish hosts, and gravid female mussels have evolved a spectrum of strategies to infect fish hosts with their larvae. In many North American species, this involves displaying a mantle lure: a pigmented fleshy extension that acts as an aggressive mimic of a host fish prey, thereby eliciting a feeding response that results in host infection. The mantle lure of Lampsilis fasciola is of particular interest because it is apparently polymorphic, with two distinct primary lure phenotypes. One, described as "darter-like", has "eyespots", a mottled body coloration, prominent marginal extensions, and a distinct "tail". The other, described as "worm-like", lacks those features and has an orange and black coloration. We investigated this phenomenon using genomics, captive rearing, biogeographic, and behavioral analyses. Within-brood lure variation and within-population phylogenomic (ddRAD-seq) analyses of individuals bearing different lures confirmed that this phenomenon is a true polymorphism. The relative abundance of the two morphs appears stable over ecological timeframes: the ratio of the two lure phenotypes in a River Raisin (MI) population in 2017 was consistent with that of museum samples collected at the same site six decades earlier. Within the River Raisin, four main "darter-like" lure motifs visually approximated four co-occurring darter species (Etheostoma blennioides, E. exile, E. microperca, and Percina maculata), and the "worm-like" lure resembled a widespread common leech, Macrobdella decora. Darters and leeches are typical prey of Micropterus dolomieui (smallmouth bass), the primary fish host of L. fasciola. In situ field recordings of the L. fasciola "darter" and "leech" lure display behaviors, and the lure display of co-occurring congener L. cardium, were captured. Despite having putative models in distinct phyla, both L. fasciola lure morphs have largely similar display behaviors that differ significantly from that of sympatric L. cardium individuals. Some minor differences in the behavior between the two L. fasciola morphs were observed, but we found no clear evidence for a behavioral component of the polymorphism given the criteria measured. Discovery of discrete within-brood inheritance of the lure polymorphism implies potential control by a single genetic locus and identifies L. fasciola as a promising study system to identify regulatory genes controlling a key adaptive trait of freshwater mussels.


Assuntos
Mimetismo Biológico , Animais , Feminino , Unionidae/genética , Unionidae/parasitologia , Água Doce , Polimorfismo Genético , Fenótipo , Interações Hospedeiro-Parasita/genética , Filogenia , Pigmentação/genética
2.
PeerJ ; 7: e7484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497390

RESUMO

The genus Corbicula consists of estuarine or freshwater clams native to temperate/tropical regions of Asia, Africa, and Australia that collectively encompass both sexual species and clonal (androgenetic) lineages. The latter have become globally invasive in freshwater systems and they represent some of the most successful aquatic invasive lineages. Previous studies have documented four invasive clonal lineages, Forms A, B, C, and Rlc, with varying known distributions. Form A (R in Europe) occurs globally, Form B is found solely in North America, mainly the western United States, Form C (S in Europe) occurs both in European watersheds and in South America, and Rlc is known from Europe. A putative fifth invasive morph, Form D, was recently described in the New World from the Illinois River (Great Lakes watershed), where it occurs in sympatry with Forms A and B. An initial study showed Form D to be conchologically distinct: possessing rust-colored rays and white nacre with purple teeth. However, its genetic distinctiveness using standard molecular markers (mitochondrial cytochrome c oxidase subunit I and nuclear ribosomal 28S RNA) was ambiguous. To resolve this issue, we performed a phylogenomic analysis using 1,699-30,027 nuclear genomic loci collected via the next generation double digested restriction-site associated DNA sequencing method. Our results confirmed Form D to be a distinct invasive New World lineage with a population genomic profile consistent with clonality. A majority (7/9) of the phylogenomic analyses recovered the four New World invasive Corbicula lineages (Forms A, B, C, and D) as members of a clonal clade, sister to the non-clonal Lake Biwa (Japan) endemic, Corbicula sandai. The age of the clonal clade was estimated at 1.49 million years (my; ± 0.401-2.955 my) whereas the estimated ages of the four invasive lineage crown clades ranged from 0.27 to 0.44 my. We recovered very little evidence of nuclear genomic admixture among the four invasive lineages in our study populations. In contrast, 2/6 C. sandai individuals displayed partial nuclear genomic Structure assignments with multiple invasive clonal lineages. These results provide new insights into the origin and maintenance of clonality in this complex system.

3.
Evol Appl ; 12(5): 1017-1033, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31080512

RESUMO

Eleven of eighteen Society Island Partula species endemic to the Windward Island subgroup (Moorea and Tahiti) have been extirpated by an ill-advised biological control program. The conservation status of this critically endangered tree snail radiation is of considerable import, but is clouded by taxonomic uncertainty due to the extensive lack of congruence among species designations, diagnostic morphologies, and molecular markers. Using a combination of museum, captive, and remnant wild snails, we obtained the first high-resolution nuclear genomic perspective of the evolutionary relationships and survival of fourteen Windward Island Partula species, totaling 93 specimens. We analyzed ~1,607-28,194 nuclear genomic loci collected with the double digest restriction-site associated sequencing method. Results from phylogenomic trees, species estimation, and population assignment tests yielded monophyly of the Windward Island subgroup. Within this group, two well-supported clades encompassing five species complexes were recovered. Clade 1 was restricted to Tahiti and contained two species complexes: "P. affinis" (three species) and "P. otaheitana" (five species). Clade 2 occurred on Moorea and on Tahiti and consisted of three species complexes: one Tahitian, "P. clara/P. hyalina"; the other two, "P. taeniata" (three species) and "P. suturalis" (six species), Moorean. Our genomic results largely corroborated previous mitochondrial DNA survival estimates for Moorea and Tahiti, with all five species complexes having members surviving in captivity and/or as remnant wild populations, although the details vary in each case. Continued, proactive conservation and management may yet ensure a phylogenetically representative survival of the fabled Partula species of Moorea and Tahiti.

4.
Int J Parasitol ; 49(1): 71-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447201

RESUMO

Mussels in the order Unionoida comprise ∼75% of the world's freshwater bivalve species and are free-living apart from a brief larval stage that parasitizes fish. We investigated the relationships among species of North American unionid mussels and their known host fishes from a macroevolutionary perspective to test whether and how ecological and evolutionary factors correlate with patterns of host use. A subset of 69 mussel species was chosen based on data availability regarding their fish host repertoires, phylogenetic relationships, and ecology. Despite the brevity of their parasitic life stages, the mussels conformed to the right-skewed distribution of host specificity typical of parasitic taxa, in which most species are specialists and a few are generalists. Phylogenetic least squares regression models identified affinity for low-gradient and riffle habitats, and colonization of post-glacial watersheds as the best predictors for the number of fish host species per mussel. However, the second-best model identified citation number as a predictor of the number of hosts, implying that many mussel-host interactions still remain to be identified. A Multiple Regression Mantel test was performed to identify factors associated with the proportion of hosts shared between pairs of mussel species. Range overlap, citations, genetic distance, and similarity in host infection strategy were significantly correlated with the proportion of hosts shared, yet total variation as explained by the best model was low (R2 = 0.14). There was evidence of a topological association between mussels and their hosts (P = 0.001) and a significant phylogenetic signal of host specificity (λ = 0.81, P = 0.003), indicating closely related mussels that overlap in range are more likely to be competing for hosts. Our results provide an initial macroevolutionary framework for studying the evolution of host infection strategies in these mussels but also highlights gaps still remaining in our fundamental ecological knowledge of this endangered clade.


Assuntos
Biodiversidade , Peixes/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Unionidae/classificação , Unionidae/crescimento & desenvolvimento , Animais , Ecossistema , Água Doce , América do Norte , Filogenia , Unionidae/genética
5.
Mol Phylogenet Evol ; 106: 151-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27677398

RESUMO

Natural history museum collections provide a biodiversity window into the past and are of particular importance to the study of extinction-impacted clades such as the Pacific Island tree snail family Partulidae. Deliberate introduction of the predatory rosy wolf snail Euglandina rosea in the late 20th century led to the extinction/extirpation of 55/61 Society Island Partulidae species. In this study, we phylogenomically investigated the inter-relationships of the three surviving Society Island valley Partula species: P. taeniata (Moorea), P. clara and P. hyalina (Tahiti). All three formed a distinct clade in earlier mitochondrial phylogenies. Using Next Generation Sequencing (NGS) double digested Restriction Associated DNA sequencing (ddRADseq), we found that 46-year-old lyophilized museum specimens produced similar numbers of reads, sequencing depth, and loci as 10-year old ethanol-preserved collections. Phylogenomic trees indicated that Tahitian P. clara and P. hyalina are the result of a single founding lineage from Moorea, contrasting previous mitochondrial results and clarifying the enigmatic taxonomic status of P. c. incrassa. Our study highlights the utility and viability of NGS techniques for museum specimens and their increased resolution of evolutionary patterns. Sampling will be expanded to include the remaining Society Island partulid taxa to further explore the evolutionary history of this radiation.


Assuntos
Extinção Biológica , Caramujos/classificação , Animais , Biodiversidade , Evolução Biológica , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Museus , Filogenia , Filogeografia , Polinésia , Alinhamento de Sequência , Análise de Sequência de DNA , Caramujos/genética
6.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27383818

RESUMO

The great diversity of marine life has been shaped by the interplay between abiotic and biotic factors. Among different biotic interactions, symbiosis is an important yet less studied phenomenon. Here, we tested how symbiotic associations affected marine diversification, using the bivalve superfamily Galeommatoidea as a study system. This superfamily contains large numbers of obligate commensal as well as free-living species and is therefore amenable to comparative approaches. We constructed a global molecular phylogeny of Galeommatoidea and compared macroevolutionary patterns between free-living and commensal lineages. Our analyses inferred that commensalism/sediment-dwelling is likely to be the ancestral condition of Galeommatoidea and that secondary invasions of hard-bottom habitats linked to the loss of commensalism. One major clade containing most of the free-living species exhibits a 2-4 times higher diversification rate than that of the commensals, likely driven by frequent niche partitioning in highly heterogeneous hard-bottom habitats. However, commensal clades show much higher within-clade morphological disparity, likely promoted by their intimate associations with diverse hosts. Our study highlights the importance of interactions between different ecological factors in shaping marine macroevolution and that biotic factors cannot be ignored if we wish to fully understand processes that generate marine biodiversity.


Assuntos
Evolução Biológica , Bivalves/classificação , Filogenia , Animais , Ecossistema
7.
Zookeys ; (316): 67-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878515

RESUMO

A galeommatid bivalve mollusk, representing a new species, is described from off the coasts of California and Vancouver Island, British Columbia. The new bivalve has a commensal relationship with the heart urchin, Brisaster latifrons. It has been observed crawling between the oral spines of this urchin, frequently near the peristome. The bivalve has been recorded from 80 (Vancouver Island) to 444 (southern California) meters depth, in muddy sediments. In common with other galeommatoideans, the new species broods its young; however it differs from the large majority of commensal members in lacking planktotrophic larval development. Waldo arthuri, new species, has multiple morphological, ecological and developmental similarities to other members of the genus Waldo Nicol, 1966, from the southern Atlantic and Antarctic Oceans. This is most pronounced for the Argentine species, Waldo paucitentaculatus Zelaya & Ituarte, 2013, Waldo arthuri's sister speciesin nuclear and mitochondrial gene trees. Despite this close relationship, Waldo arthuri is phylogentically distinct and possesses several hinge, shell sculpture, foot, and mantle tentacle characteristics that merit its description as new.

9.
PLoS One ; 6(5): e20496, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655221

RESUMO

BACKGROUND: A third of all known freshwater mollusk extinctions worldwide have occurred within a single medium-sized American drainage. The Mobile River Basin (MRB) of Alabama, a global hotspot of temperate freshwater biodiversity, was intensively industrialized during the 20(th) century, driving 47 of its 139 endemic mollusk species to extinction. These include the ancylinid limpet Rhodacmea filosa, currently classified as extinct (IUCN Red List), a member of a critically endangered southeastern North American genus reduced to a single known extant population (of R. elatior) in the MRB. METHODOLOGY/PRINCIPAL FINDINGS: We document here the tripling of known extant populations of this North American limpet genus with the rediscovery of enduring Rhodacmea filosa in a MRB tributary and of R. elatior in its type locality: the Green River, Kentucky, an Ohio River Basin (ORB) tributary. Rhodacmea species are diagnosed using untested conchological traits and we reassessed their systematic and conservation status across both basins using morphometric and genetic characters. Our data corroborated the taxonomic validity of Rhodacmea filosa and we inferred a within-MRB cladogenic origin from a common ancestor bearing the R. elatior shell phenotype. The geographically-isolated MRB and ORB R. elatior populations formed a cryptic species complex: although overlapping morphometrically, they exhibited a pronounced phylogenetic disjunction that greatly exceeded that of within-MRB R. elatior and R. filosa sister species. CONCLUSIONS/SIGNIFICANCE: Rhodacmea filosa, the type species of the genus, is not extinct. It persists in a Coosa River tributary and morphometric and phylogenetic analyses confirm its taxonomic validity. All three surviving populations of the genus Rhodacmea merit specific status. They collectively contain all known survivors of a phylogenetically highly distinctive North American endemic genus and therefore represent a concentrated fraction of continental freshwater gastropod biodiversity. We recommend the establishment of a proactive targeted conservation program that may include their captive propagation and reintroduction.


Assuntos
Extinção Biológica , Moluscos/anatomia & histologia , Moluscos/genética , Animais , Moluscos/classificação , Filogenia , Estados Unidos
10.
BMC Evol Biol ; 9: 204, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19686604

RESUMO

BACKGROUND: The mass extirpation of the island of Moorea's endemic partulid tree snail fauna, following the deliberate introduction of the alien predator Euglandina rosea, represents one of the highest profile conservation crises of the past thirty years. All of the island's partulids were thought to be extirpated by 1987, with five species persisting in zoos, but intensive field surveys have recently detected a number of surviving wild populations. We report here a mitochondrial (mt) phylogenetic estimate of Moorean partulid wild and captive lineage survival calibrated with a reference museum collection that pre-dates the predator's introduction and that also includes a parallel dataset from the neighboring island of Tahiti. RESULTS: Although severe winnowing of Moorea's mt lineage diversity has occurred, seven of eight (six Partula; two Samoana) partulid tip clades remain extant. The extinct mt clade occurred predominantly in the P. suturalis species complex and it represented a major component of Moorea's endemic partulid treespace. Extant Moorean mt clades exhibited a complex spectrum of persistence on Moorea, in captivity, and (in the form of five phylogenetically distinct sister lineages) on Tahiti. Most notably, three Partula taxa, bearing two multi-island mt lineages, have survived decades of E. rosea predation on Moorea (P. taeniata) and in the valleys of Tahiti (P. hyalina and P. clara). Their differential persistence was correlated with intrinsic attributes, such as taxonomy and mt lineages, rather than with their respective within-island distribution patterns. CONCLUSION: Conservation efforts directed toward Moorean and Tahitian partulids have typically operated within a single island frame of reference, but our discovery of robust genealogical ties among survivors on both islands implies that a multi-island perspective is required. Understanding what genetic and/or ecological factors have enabled Partula taeniata, P. hyalina and P. clara to differentially survive long-term direct exposure to the predator may provide important clues toward developing a viable long term conservation plan for Society Island partulid tree snails.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Filogenia , Caramujos/genética , Animais , DNA Mitocondrial/genética , Variação Genética , Geografia , Polinésia , Análise de Sequência de DNA , Caramujos/classificação
11.
Curr Biol ; 17(13): R502-3, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17610827

RESUMO

Oceanic islands frequently support endemic faunal radiations that are highly vulnerable to introduced predators [1]. This vulnerability is epitomized by the rapid extinction in the wild of all but five of 61 described Society Islands partulid tree snails [2], following the deliberate introduction of an alien biological control agent: the carnivorous snail Euglandina rosea[3]. Tahiti's tree snail populations have been almost completely extirpated and three of the island's eight endemic Partula species are officially extinct, a fourth persisting only in captivity [2]. We report a molecular phylogenetic estimate of Tahitian Partula mitochondrial lineage survival calibrated with a 1970 reference museum collection that pre-dates the predator's 1974 introduction to the island [4]. Although severe winnowing of lineage diversity has occurred, none of the five primary Tahitian Partula clades present in the museum samples is extinct. Targeted conservation measures, especially of montane refuge populations, may yet preserve a representative sub-sample of Tahiti's endemic tree snail genetic diversity in the wild.


Assuntos
DNA Mitocondrial , Filogenia , Caramujos/genética , Animais , Extinção Biológica , Geografia , Polinésia
12.
Mol Phylogenet Evol ; 43(2): 386-97, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17400481

RESUMO

We investigated the population genetic structure and phylogenetic relationships of four morphospecies of Semisulcospira sampled from multiple South Korean drainages. One, S. extensa, displayed modest levels of genetic diversity and formed a species-specific clade for both mitochondrial (mt) and nuclear markers. In contrast, the other three, S. coreana, S. gottschei, and S. libertina, were polyphyletic for both mt and nuclear markers. They formed, together with other nominal congeners (S. forticosta, S. multicincta, S. nodiperda, and S. tegulata), a taxonomically heterogeneous species complex containing population-level admixtures of genotypes from numerically predominant modal clades in addition to rare, phylogenetically divergent, mt and nuclear genotypes. The modal mt haplotypes exhibited far more geographic than taxonomic congruence and typically co-clustered into drainage-specific tip clades, irrespective of nominal taxonomic status. The evolutionary origins of the observed non-extensa phylogenetic heterogeneity are unclear at present although the available data do not support paralogous mt marker phenomena or the presence of cryptic species. We cannot distinguish among retention of ancestral polymorphisms or recticulate evolutionary origins as explanatory mechanisms and it may require the genetic characterization of Semisulcospira lineages throughout much of their collective east Asian range to address this issue. Based on the available data, we consider it best to view all of our non-extensa Korean study taxa as a single polymorphic species complex of the type species S. libertina. There is considerable evidence that similarly complex genetic structuring, at least for mt, may be typical of many other freshwater cerithioidean snail taxa. In light of our Semisulcospira results, we suggest that meaningful molecular phylogenetic characterization of freshwater cerithioidean lineages may require the use of both mt and nuclear markers together with population level sampling of all nominal taxa within regional drainages.


Assuntos
DNA Mitocondrial/genética , Filogenia , Caramujos/classificação , Caramujos/genética , Animais , DNA Ribossômico/genética , Marcadores Genéticos , Coreia (Geográfico) , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...