Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Neurol ; 154: 51-57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531163

RESUMO

BACKGROUND: Mutations in the CLN6 gene cause late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood onset. Clinically, individuals present with progressive motor and cognitive regression, ataxia, and early death. The aim of this study is to establish natural history data of individuals with classic, late-infantile-onset (age less than five years) CLN6 disease. METHODS: We analyzed the natural history of 25 patients with late-infantile-onset CLN6, utilizing the Hamburg motor-language scale to measure disease progression. The key outcomes were CLN6 disease progression, assessed by rate of decline in motor and language clinical domain summary scores (0 to 6 total points); onset and type of first symptom; onset of first seizure; and time from first symptom to complete loss of function. RESULTS: Median age of total motor and language onset of decline was 42 months (interquartile range 36 to 48). The estimated rate of decline in total score was at a slope of -1.20 (S.D. 0.30) per year, after the start of decline. Complete loss of both motor and language function was found to be, on average, 88.1 months (S.D. 13.5). CONCLUSIONS: To our knowledge, this is the largest international study that monitors the longitudinal natural history and progression of CLN6 disease. These data may serve as a template for future interventional trials targeted to slow the progression of this devastating disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Pré-Escolar , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/diagnóstico , Proteínas de Membrana/genética , Mutação/genética , Convulsões , Progressão da Doença
2.
Environ Entomol ; 52(3): 360-370, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36939151

RESUMO

The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is a key insect pest of amaranth in East Africa. Pest management has been restricted to indiscriminate application of insecticides to foliage. Applying systemic insecticides to seeds has been shown to manage aphid infestations in other crop systems. We evaluated two commercially available seed treatments in East Africa, Apron Star (thiamethoxam 20 g/kg + metalaxyl-M 20 g/kg + difenoconazole 2 g/kg) and Menceron (imidacloprid 233 g/L + pencycuron 50 g/L + thiram 107 g/L) for their efficacy against M. persicae and impact on fresh leaf yield with two Amaranthus species, Amaranthus blitum (2 selections), Amaranthus hybridus (4 selections) and untreated control. Two storage periods (24 h and 3 months) with seed treatments were used. Each amaranth selection was treated individually with Apron and Monceren or untreated, and seeds were planted either 24 h or 3 months after treatment. Significant reduction in live aphids was observed with A. blitum and A. hybridus selections grown with seed treatment, at 6, 8 and 10 d after infestation (DAI) when compared with seeds grown without seed treatment. Untreated seeds of A. hybridus (selection 5) had significantly higher number of live aphids up to 243, greater percentage of damaged leaves and leaf damage score up to 84% and 64% respectively when compared with treated seeds of specific amaranth at 10 DAI. No significant difference was noted between seed treatment and storage time. Amaranth seeds treated with Monceren offered more protection against infestations of Myzus persicae than amaranth seeds treated with Apron under high tunnel experiments.


Assuntos
Amaranthus , Afídeos , Inseticidas , Animais , Inseticidas/farmacologia , Tiametoxam , Sementes , Verduras , Folhas de Planta
3.
Sci Rep ; 12(1): 12020, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835854

RESUMO

The frequent use of insecticides to manage soybean aphids, Aphis glycines (Hemiptera: Aphididae), in the United States has contributed to field-evolved resistance. Pyrethroid-resistant aphids have nonsynonymous mutations in the voltage-gated sodium channel (vgsc). We identified a leucine to phenylalanine mutation at position 1014 (L1014F) and a methionine to isoleucine mutation (M918I) of the A. glycines vgsc, both suspected of conferring knockdown resistance (kdr) to lambda-cyhalothrin. We developed molecular markers to identify these mutations in insecticide-resistant aphids. We determined that A. glycines which survived exposure to a diagnostic concentration of lambda-cyhalothrin and bifenthrin via glass-vial bioassays had these mutations, and showed significant changes in the resistance allele frequency between samples collected before and after field application of lambda-cyhalothrin. Thus, a strong association was revealed between aphids with L1014F and M918I vgsc mutations and survival following exposure to pyrethroids. Specifically, the highest survival was observed for aphids with the kdr (L1014F) and heterozygote super-kdr (L1014F + M918I) genotypes following laboratory bioassays and in-field application of lambda-cyhalothrin. These genetic markers could be used as a diagnostic tool for detecting insecticide-resistant A. glycines and monitoring the geographic distribution of pyrethroid resistance. We discuss how generating these types of data could improve our efforts to mitigate the effects of pyrethroid resistance on crop production.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Marcadores Genéticos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Fenótipo , Piretrinas/farmacologia , Glycine max , Canais de Sódio Disparados por Voltagem/genética
4.
J Econ Entomol ; 115(1): 279-288, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139216

RESUMO

The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is an invasive pest that can cause severe yield loss to soybeans in the North Central United States. A tactic to counter this pest is the use of aphid-resistant soybean varieties. However, the frequency of virulent biotypes that can survive on resistant varieties is expected to increase as more farmers use these varieties. Soybean aphids can alter soybean physiology primarily by two mechanisms, feeding facilitation, and the obviation of resistance, favoring subsequent colonization by additional conspecifics. We developed a nonlocal, differential equation population model to explore the dynamics of these biological mechanisms on soybean plants coinfested with virulent and avirulent aphids. We then use demographic parameters from laboratory experiments to perform numerical simulations via the model. We used this model to determine that initial conditions are an important factor in the season-long cooccurrence of both biotypes. The initial population of both biotypes above the resistance threshold or avirulent aphid close to resistance threshold and high virulent aphid population results in coexistence of the aphids throughout the season. These simulations successfully mimicked aphid dynamics observed in the field- and laboratory-based microcosms. The model showed an increase in colonization of virulent aphids increases the likelihood that aphid resistance is suppressed, subsequently increasing the survival of avirulent aphids. This interaction produced an indirect, positive interaction between the biotypes. These results suggest the potential for a 'within plant' refuge that could contribute to the sustainable use of aphid-resistant soybeans.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Estações do Ano , Glycine max/fisiologia
5.
Pest Manag Sci ; 78(5): 2000-2010, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35102702

RESUMO

BACKGROUND: Foliar application of insecticides is the main strategy to manage soybean aphid, Aphis glycines (Hemiptera: Aphididae), in the northcentral United States. Subpopulations of A. glycines have multiple nonsynonymous mutations in the voltage-gated sodium channel (vgsc) genes that are associated with pyrethroid resistance. We explored if fitness costs are associated with phenotypes conferred by vgsc mutations using life table analyses. We predicted that there would be significant differences between pyrethroid susceptibility and field-collected, parthenogenetic isofemale clones with differing, nonsynonymous mutations in vgsc genes. RESULTS: Estimated resistance ratios for the pyrethroid-resistant clones ranged from 3.1 to 37.58 and 5.6 to 53.91 for lambda-cyhalothrin and bifenthrin, respectively. Although life table analyses revealed some biological and demographic parameters to be significantly different among the clonal lines, there was no association between levels of pyrethroid resistance and a decline in fitness. By contrast, one of the most resistant clonal lines (SBA-MN1-2017) had a significantly higher finite rate of increase, intrinsic rate of increase and greater overall fitness compared to the susceptible control and other pyrethroid-resistant clonal lines. CONCLUSIONS: Our life history analysis suggests that there are no negative pleotropic effects associated with the pyrethroid resistance in the clonal A. glycines lines used in this study. We discuss the potential impact of these results on efficacies of insecticide resistance management (IRM) and integrated pest management (IPM) plans directed at delaying the spread of pyrethroid-resistant A. glycines.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Glycine max/genética
6.
J Econ Entomol ; 115(1): 1-9, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34850022

RESUMO

Extreme weather events, like high temperatures and droughts, are predicted to become common with climate change, and may negatively impact plant growth. How honey bees (Apis mellifera L. [Hymenoptera: Apidae]) will respond to this challenge is unclear, especially when collecting pollen, their primary source of protein, lipids, and micro-nutrients. We explored this response with a data set from multiple research projects that measured pollen collected by honey bees during 2015-2017 in which above-average temperatures and a drought occurred in 2017. We summarized the abundance and diversity of pollen collected from July to September in replicated apiaries kept at commercial soybean and corn farms in Iowa, in the Midwestern USA. The most commonly collected pollen was from clover (Trifolium spp. [Fabales: Fabaceae]), which dramatically declined in absolute and relative abundance in July 2017 during a period of high temperatures and drought. Due to an apparent lack of clover, honey bees switched to the more drought-tolerant native species (e.g., Chamaecrista fasciculata [Michx.] Greene [Fabales: Fabaceae], Dalea purpurea Vent. [Fabales: Fabaceae], Solidago spp. [Asterales: Asteraceae]), and several species of Asteraceae. This was especially noticeable in August 2017 when C. fasciculata dominated (87%) and clover disappeared from bee-collected pollen. We discuss the potential implications of climate-induced forage dearth on honey bee nutritional health. We also compare these results to a growing body of literature on the use of native, perennial flowering plants found in Midwestern prairies for the conservation of beneficial insects. We discuss the potential for drought resistant-native plants to potentially promote resilience to climate change for the non-native, managed honey bee colonies in the United States.


Assuntos
Himenópteros , Magnoliopsida , Animais , Abelhas , Fazendas , Plantas , Pólen
7.
J Wildl Dis ; 57(4): 844-855, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424993

RESUMO

Eastern moose (Alces alces americana) are heavily parasitized by winter ticks (Dermacentor albipictus), the dominant cause of increased calf mortality in the northeastern US. Although much work has focused on the direct negative effects of winter tick on moose, it remains unknown whether diseases transmitted by ticks may also affect moose health or pose a risk to other species. We explored the role that moose and winter ticks play in transmission of the tick-borne bacterial pathogens, Anaplasma spp., which cause mild to severe illness in humans and domestic animals. Our objectives were to 1) estimate the prevalence of Anaplasma spp. in moose and winter ticks; 2) determine the phylogenetic placement of these strains with respect to those found in other hosts and vectors; and 3) explore risk factors of Anaplasma infection in moose. A total of 157 moose (142 calves, 15 adults) were captured in western (n=83) and northern (n=74) Maine in 2017 and 2018. We screened for Anaplasma spp. in moose whole blood samples using a genus-specific PCR assay targeting the 16S rRNA gene. Over half (54%) of the moose were infected with Anaplasma bacteria, with a greater proportion of moose harboring Anaplasma-infections in the western (67%) versus northern study areas (38%). Male moose exhibited a higher prevalence than did females (63% vs. 47%). In contrast, Anaplasma spp. prevalence in winter ticks was low (<1%). Sequencing and phylogenetic analysis revealed that the single Anaplasma strain in moose was highly divergent from the strain in winter ticks and most closely related to an uncharacterized North American cervid strain. We conclude that winter ticks are unlikely to play a significant role in Anaplasma transmission to moose; however, high infection prevalence warrants further investigation into the impacts of Anaplasma spp. infection on moose health.


Assuntos
Anaplasmose , Dermacentor , Anaplasma/genética , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Animais , Dermacentor/microbiologia , Feminino , Maine/epidemiologia , Masculino , Filogenia , Prevalência , RNA Ribossômico 16S/genética , Fatores de Risco
8.
Environ Entomol ; 50(4): 757-761, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34081129

RESUMO

As the expansion of solar power spreads through much of the United States, members of the solar industry are working to change how solar energy facilities are designed and presented to the public. This includes the addition of habitat to conserve pollinators. We highlight and discuss ongoing efforts to couple solar energy production with pollinator conservation, noting recent legal definitions of these practices. We summarize key studies from the field of ecology, bee conservation, and our experience working with members of the solar industry (e.g., contribution to legislation defining solar pollinator habitat). Several recently published studies that employed similar practices to those proposed for solar developments reveal features that should be replicated and encouraged by the industry. These results suggest the addition of native, perennial flowering vegetation will promote wild bee conservation and more sustainable honey beekeeping. Going forward, there is a need for oversight and future research to avoid the misapplication of this promising but as of yet untested practice of coupling solar energy production with pollinator-friendly habitat. We conclude with best practices for the implementation of these additions to realize conservation and agricultural benefits.


Assuntos
Polinização , Energia Solar , Agricultura , Animais , Criação de Abelhas , Abelhas , Ecossistema
9.
Curr Opin Insect Sci ; 45: 53-58, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33545434

RESUMO

The soybean aphid (Aphis glycines) is an important pest of soybeans in the Midwestern US. The first aphid resistance genes were identified in the early 21st century and resistant varieties have been commercially available for 10 years, but have been very underutilized. Major seed companies have avoided commercializing aphid resistant soybean varieties for conventional farmers (i.e., not organic), in part because of the discovery of virulent biotypes in North America. The emergence of soybean aphid populations resistant to insecticides creates a greater incentive for the use of host plant resistance. New research on aphid genetics and markers, plant gene expression and in-plant refuges, suggest important avenues for insect resistance management (IRM) which may encourage more widescale commercialization of this valuable pest management tool.


Assuntos
Afídeos/fisiologia , Produtos Agrícolas/genética , Herbivoria , Melhoramento Vegetal , Defesa das Plantas contra Herbivoria , Animais , Resistência a Inseticidas
10.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33620484

RESUMO

Prairie was a dominant habitat within large portions of North America before European settlement. Conversion of prairies to farmland resulted in the loss of a large proportion of native floral resources, contributing to the decline of native pollinator populations. Efforts to reconstruct prairie could provide honey bees (Apis mellifera) a source of much-needed forage, especially in regions dominated by crop production. To what extent honey bees, which were introduced to North America by European settlers, use plants native to prairies is unclear. We placed colonies with pollen traps within reconstructed prairies in central Iowa to determine which and how much pollen is collected from prairie plants. Honey bee colonies collected more pollen from nonnative than native plants during June and July. During August and September, honey bee colonies collected more pollen from plants native to prairies. Our results suggest that honey bees' use of native prairie plants may depend upon the seasonality of both native and nonnative plants present in the landscape. This finding may be useful for addressing the nutritional health of honey bees, as colonies in this region frequently suffer from a dearth of forage contributing to colony declines during August and September when crops and weedy plants cease blooming. These results suggest that prairie can be a significant source of forage for honey bees in the later part of the growing season in the Midwestern United States; we discuss this insight in the context of honey bee health and biodiversity conservation.


Assuntos
Criação de Abelhas , Abelhas/fisiologia , Pradaria , Espécies Introduzidas , Magnoliopsida , Pólen , Animais , Comportamento Alimentar , Iowa , Magnoliopsida/fisiologia , Estações do Ano
11.
Environ Entomol ; 50(2): 455-466, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492382

RESUMO

Populations of wild and managed pollinators are declining in North America, and causes include increases in disease pressure and decreases in flowering resources. Tallgrass prairies can provide floral resources for managed honey bees (Hymenoptera: Apidae, Apis mellifera Linnaeus) and wild bees. Honey bees kept near prairies may compete with wild bees for floral resources, and potentially transfer viral pathogens to wild bees. Measurements of these potential interactions are lacking, especially in the context of native habitat conservation. To address this, we assessed abundance and richness of wild bees in prairies with and without honey bee hives present, and the potential spillover of several honey bee viruses to bumble bees (Hymenoptera: Apidae, Bombus Latrielle). We found no indication that the presence of honey bee hives over 2 yr had a negative effect on population size of wild bee taxa, though a potential longer-term effect remains unknown. All levels of viruses quantified in bumble bees were lower than those observed in honey bees. Higher levels of deformed wing virus and Israeli acute paralysis virus were found in Bombus griseocollis DeGeer (Hymenoptera: Apidae) collected at sites with hives than those without hives. These data suggest that the presence of honey bees in tallgrass prairie could increase wild bee exposure to viruses. Additional studies on cross-species transmission of viruses are needed to inform decisions regarding the cohabitation of managed bees within habitat utilized by wild bees.


Assuntos
Himenópteros , Vírus de RNA , Animais , Abelhas , Pradaria , América do Norte
12.
Pest Manag Sci ; 77(2): 886-894, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32949094

RESUMO

BACKGROUND: The profitability of farming varies based on factors such as a crop's market value, input costs and occurrence of resistant pests, all capable of altering the value of pest management tactics in an integrated pest management program. We provide a framework for calculating expected yield and expected net revenue of pest management scenarios, using the soybean aphid (Aphis glycines) as a case study. Foliar insecticide and host-plant resistance are effective management tactics for preventing yield loss from soybean aphid outbreaks; however, pyrethroid-resistant aphid populations pose a management challenge for farmers. We evaluated eight scenarios relevant to soybean aphid management in Iowa with varying probabilities of aphid outbreaks and insecticide-resistant aphids occurring. RESULTS: Our equation suggests that insecticide use is profitable when the probability of an aphid outbreak is ≥29%, and soybean production will become more costly with increasing probability of pyrethroid-resistant aphids. If farmers continue to use pyrethroids, they will not experience financial consequences from pyrethroid-resistant aphids until the chance of insecticide resistance is 48%. Aphid-resistant varieties provided consistent yield and offered the highest net revenue under all conditions. CONCLUSION: This framework can be used for other crop-pest systems to evaluate the profitability of management tactics and investigate how resistance impacts revenue for farmers. Including the cost of resistance in crop budgets can help farmers and agronomic consultants comprehend these impacts and enhance decision-making to increase revenue and curb resistance development.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Iowa , Glycine max
13.
Environ Entomol ; 49(5): 1137-1144, 2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794557

RESUMO

Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is the main pest of maize in Brazil, attacking plants from emergence to reproductive stages. Here, we conducted studies to evaluate the efficacy of two seed treatments (chlorantraniliprole alone and imidacloprid combined with thiodicarb) on Bt and non-Bt maize in laboratory bioassays with distinct FAW strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1A.105 + Cry2Ab2) events and F1 hybrids of the selected and susceptible strains (heterozygotes), and in the field against a natural infestation. In the laboratory, leaf-discs from seed treated Bt-maize plants at 7 d after emergence (DAE) increased the mortality of FAW resistant, heterozygote, and susceptible strains up to 24.8%, when compared with the respective maize grown without a seed treatment. In the field against natural infestations of FAW, Bt maize with a seed treatment had ~30% less FAW damage than non-Bt maize with the same seed treatment at 7 and 14 DAE. No differences in FAW damage was observed between Bt and non-Bt maize grown with and without a seed treatment at 21 DAE. Maize seeds treated with chlorantraniliprole alone or imidacloprid and thiodicarb combined presented limited protection against early infestations of FAW strains under laboratory and field studies.


Assuntos
Bacillus thuringiensis , Zea mays , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Brasil , Endotoxinas , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Sementes , Spodoptera , Zea mays/genética
14.
J Econ Entomol ; 113(4): 1591-1608, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32515787

RESUMO

Soybean production in Brazil has been markedly affected by invasions of non-native arthropod species that feed on the crop, severely impacting biodiversity, food security, health, and economic development. Data on soybean production losses and increase in insecticide usage over the last two decades have not been explored in association with past invasion events, and the dynamics underlying the recent blitz of invasive species into Brazil remain largely unclear. We provide a review of arthropod invasions in the Brazilian soybean agroecosystem since 1990, indicating that the introductions of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), Tetranychus urticae (Koch) (Acari: Tetranychidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are likely correlated with periods of increase in insecticide usage for soybean production. Using these three cases as examples, we review factors that could lead to increased likelihood of future invasions by particular pests, outlining four possible criteria to evaluate potential invasiveness of non-native arthropods: likelihood of entry, likelihood of establishment, biological features of the species, and availability of control measures. Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Aphis glycines (Matsumura) (Hemiptera: Sternorrhynca) are examples of highly damaging soybean pests, related to one or more of these factors, that could be introduced into Brazil over the next years and which could lead to problematic scenarios. Melanagromyza sojae (Zehnter) (Diptera: Agromyzidae) also meets these criteria and has successfully invaded and colonized Brazilian soybean fields in recent years. Our review identifies current issues within soybean pest management in Brazil and highlights the need to adopt management measures to offset future costs and minimize lost revenue.


Assuntos
Afídeos , Inseticidas , Mariposas , Animais , Brasil , Glycine max
15.
Insects ; 11(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545613

RESUMO

To study how honey bees utilize forage resources and guide pollination management plans in crops, a multitude of methods have been developed, but most are time consuming, costly, and require specialized skills. Colored pan traps for monitoring activity-density are a simple, efficient, and cost-effective alternative; however, their usefulness for studying honey bees is not well described. We examined if trap color, location within a field, and the presence of managed colonies affected estimates of honey bee activity-density within soybean fields. Soybeans are visited by pollinators but do not require these visits for seed development. Pan traps, especially those colored blue, captured more honey bees when colonies were present. There were no differences in activity-density based on placement of traps within a field nor with increasing distance from colonies. Throughout the season, activity-density in soybeans was constant but tripled after soybean ceased blooming, suggesting spikes in pan trap captures may indicate periods of forage scarcity. Activity-density did not correlate with the population size of worker bees at a site, but did correlate with number of colonies present. We conclude that pan traps can be useful for assessing honey bee activity, particularly for estimating colony presence and identifying times of forage scarcity.

16.
Insect Biochem Mol Biol ; 124: 103364, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360957

RESUMO

Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.


Assuntos
Afídeos/genética , Glycine max/genética , Defesa das Plantas contra Herbivoria/genética , Virulência/genética , Animais , Afídeos/patogenicidade , Evolução Biológica , Genes de Plantas , Genoma de Inseto , Genômica/métodos , Herbivoria , Controle de Pragas , Plantas , Sequenciamento Completo do Genoma
17.
J Econ Entomol ; 113(3): 1062-1072, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32274498

RESUMO

Intensified agriculture reduces natural and seminatural habitats and plant diversity, reducing forage available to honey bees (Apis mellifera L. [Hymenoptera: Apidea]). In agricultural landscapes of Iowa, United States, we studied the impact of extrinsic agricultural intensification on the availability of pollen for honey bees by placing colonies next to soybean fields surrounded by either a low or high level of cultivation. The abundance and diversity of pollen returned to a colony were estimated by placing pollen traps on bee colonies during the summer and fall of 2015 and 2016. We observed no difference in abundance and diversity of pollen collected by colonies in either landscape, but abundance varied over time with significantly less collected in September. We explored if the most commonly collected pollen from these landscapes had the capacity to support honey bee immune health by testing if diets consisting of these pollens improved bee resistance to a viral infection. Compared to bees denied pollen, a mixture of pollen from the two most common plant taxa (Trifolium spp. L. [Fabales: Fabaceae] and Chimaechrista fasciculata (Michx.) Greene [Fabales: Fabaceae]) significantly reduced honey bee mortality induced by viral infection. These data suggest that a community of a few common plants was favored by honey bees, and when available, could be valuable for reducing mortality from a viral infection. Our data suggest a late season shortage of pollen may be ameliorated by additions of fall flowering plants, like goldenrod (Solidago spp. L. [Asterales: Asteraceae]) and sunflower (Helianthus, Heliopsis, and Silphium spp. [Asterales: Asteraceae]), as options for enhancing pollen availability and quality for honey bees in agricultural landscapes.


Assuntos
Himenópteros , Agricultura , Animais , Abelhas , Dieta , Iowa , Pólen
18.
Environ Entomol ; 49(3): 753-764, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32249293

RESUMO

In the last century, a global transformation of Earth's surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.


Assuntos
Ecossistema , Himenópteros , Agricultura , Animais , Abelhas , Produtos Agrícolas , Fazendas
19.
J Econ Entomol ; 113(3): 1299-1306, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971589

RESUMO

The green peach aphid [Myzus persicae (Sulzer)] is an important pest of amaranth grown for leaf consumption (i.e., leafy amaranth) in the tropics. Aphids reduce the amount of fresh leaf yield of amaranth and the value of leafy amaranth as aphid-infested leaves are not marketable. Our objective was to evaluate Amaranthus species selected by a breeding program in East Africa to develop cultivars for leaf consumption with resistance to M. persicae. We focused on antibiosis to determine whether varieties of Amaranthus spp. could be grown without producing an aphid population. Artificial infestations of aphids were placed on multiple selections of three species of Amaranthus: two selections of A. blitum, four selections of A. hybridus and one selection of A. hypochondriacus. Aphid populations were assessed over a 5-wk period. Evaluations of vegetative yield, leaf damage symptoms, and specific leaf area (SLA) were made of the seven selections at the end of this experiment. Aphid populations assessed 49 d after planting differed significantly (P ≤ 0.001) among the amaranth species and within selections of the same species. The selections of A. blitum had the lowest aphid populations, and A. hybridus had the highest populations. Selections of A. hybridus produced the most marketable leaves (i.e., aphid free). The fresh weight of A. blitum were the lowest of the seven selections, whereas A. hybridus had the greatest fresh leaf weight. Implications of these finding for further promotion of amaranth breeding are discussed related to pest management for leaf production.


Assuntos
Amaranthus , Afídeos , Prunus persica , Animais , Antibiose , Folhas de Planta
20.
Annu Rev Entomol ; 65: 81-100, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31923378

RESUMO

Disturbances associated with agricultural intensification reduce our ability to achieve sustainable crop production. These disturbances stem from crop-management tactics and can leave crop fields more vulnerable to insect outbreaks, in part because natural-enemy communities often tend to be more susceptible to disturbance than herbivorous pests. Recent research has explored practices that conserve natural-enemy communities and reduce pest outbreaks, revealing that different components of agroecosystems can influence natural-enemy populations. In this review, we consider a range of disturbances that influence pest control provided by natural enemies and how conservation practices can mitigate or counteract disturbance. We use four case studies to illustrate how conservation and disturbance mitigation increase the potential for biological control and provide co-benefits for the broader agroecosystem. To facilitate the adoption of conservation practices that improve top-down control across significant areas of the landscape, these practices will need to provide multifunctional benefits, but should be implemented with natural enemies explicitly in mind.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas , Insetos , Controle Biológico de Vetores , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...