Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3967, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730255

RESUMO

Estuaries play an important role in connecting the global carbon cycle across the land-to-ocean continuum, but little is known about Australia's contribution to global CO2 emissions. Here we present an Australia-wide assessment, based on CO2 concentrations for 47 estuaries upscaled to 971 assessed Australian estuaries. We estimate total mean (±SE) estuary CO2 emissions of 8.67 ± 0.54 Tg CO2-C yr-1, with tidal systems, lagoons, and small deltas contributing 94.4%, 3.1%, and 2.5%, respectively. Although higher disturbance increased water-air CO2 fluxes, its effect on total Australian estuarine CO2 emissions was small due to the large surface areas of low and moderately disturbed tidal systems. Mean water-air CO2 fluxes from Australian small deltas and tidal systems were higher than from global estuaries because of the dominance of macrotidal subtropical and tropical systems in Australia, which have higher emissions due to lateral inputs. We suggest that global estuarine CO2 emissions should be upscaled based on geomorphology, but should also consider land-use disturbance, and climate.

2.
Sci Total Environ ; 905: 166957, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37704140

RESUMO

Fungi are key players in terrestrial organic matter (OM) degradation, but little is known about their role in marine environments. Here we compared the degradation of kelp (Ecklonia radiata) in mesocosms with and without fungicides over 45 days. The aim was to improve our understanding of the vital role of fungal OM degradation and remineralisation and its relevance to marine biogeochemical cycles (e.g., carbon, nitrogen, sulfur, or volatile sulfur). In the presence of fungi, 68 % of the kelp detritus degraded over 45 days, resulting in the production of 0.6 mol of dissolved organic carbon (DOC), 0.16 mol of dissolved inorganic carbon (DIC), 0.23 mol of total alkalinity (TA), and 0.076 mol of CO2, which was subsequently emitted to the atmosphere. Conversely, when fungi were inhibited, the bacterial community diversity was reduced, and only 25 % of the kelp detritus degraded over 45 days. The application of fungicides resulted in the generation of an excess amount of 1.5 mol of DOC, but we observed only 0.02 mol of DIC, and 0.04 mol of TA per one mole of kelp detritus, accompanied by a CO2 emission of 0.081 mol. In contrast, without fungi, remineralisation of kelp detritus to DIC, TA, dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and methanethiol (MeSH) was significantly reduced. Fungal kelp remineralisation led to a remarkable 100,000 % increase in DMSP production. The observed substantial changes in sediment chemistry when fungi are inhibited highlight the important biogeochemical role of fungal remineralisation, which likely plays a crucial role in defining coastal biogeochemical cycling, blue carbon sequestration, and thus climate regulation.


Assuntos
Fungicidas Industriais , Kelp , Matéria Orgânica Dissolvida , Dióxido de Carbono , Enxofre/metabolismo , Fungos/metabolismo , Carbono
3.
Front Microbiol ; 12: 726138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733248

RESUMO

Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.

4.
Water Res ; 187: 116438, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33070037

RESUMO

Sediment microbial communities are an important sink for both organic and inorganic nitrogen (N), with microphytobenthos (MPB) biomass making the largest contribution to short-term N-assimilation and retention. Coastal waters are increasingly subject to anthropogenic nutrient enrichment, but the effect of nutrient enrichment on microbial assimilation, processing, and fate of MPB-derived N (MPB-N) remains poorly characterised. In this study, an MPB-dominated microbial community was labeled in situ with a pulse of 15NH4+-N. Laboratory core incubations of this labeled sediment under increasing nutrient concentrations (NH4+ and PO43-: ambient, 2 × ambient, 5 × ambient, and 10 × ambient) were used to investigate changes in the processing and flux pathways of the 15N-labeled MPB-N across 10.5 d under nutrient enrichment. Short-term retention of MPB-N by MPB was stimulated by nutrient addition, with higher 15N in MPB in the nutrient amended treatments (71-93%) than in the ambient treatment (38%) at 0.5 d After 10.5 d, the nutrient amended treatments had increased turnover of MPB-N out of MPB biomass into an uncharacterised pool of sediment ON (45-75%). Increased turnover of MPB-N likely resulted from decreased recycling of MPB-N between MPB and heterotrophic bacteria as inorganic nutrients were preferentially used as an N source and remineralisation of sediment ON decreased. Decreased breakdown of sediment ON reduced the efflux of MPB-N via DON in the amended (3.9-5.2%) versus the ambient treatment (10.9%). Exports of MPB-N to the water column were relatively small, accounting for a maximum of 14% of 15N exported from the sediment, and were predominantly exported DON and N2 (denitrification). Overall, there was considerable retention of MPB-N over 10.5 d, but increased nutrient loading shifted N from MPB biomass into other sediment ON.


Assuntos
Processos Heterotróficos , Nitrogênio , Biomassa , Sedimentos Geológicos , Nutrientes
5.
Environ Sci Technol ; 54(18): 11165-11172, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786559

RESUMO

Estuarine sediments are important sites for the interception, processing, and retention of organic matter, prior to its export to the coastal oceans. Stimulated microbial co-metabolism (priming) potentially increases export of refractory organic matter through increased production of hydrolytic enzymes. Using the microphytobenthos community to directly introduce a pulse of labile carbon into sediment, we traced a priming effect and assessed the decomposition and export of preexisting organic matter. We show enhanced efflux of preexisting carbon from intertidal sediments enriched with water column nutrients. Nutrient enrichment increased production of labile microphytobenthos carbon, which stimulated degradation of previously unavailable organic matter and led to increased liberation of "old" (6855 ± 120 years BP) refractory carbon as dissolved organic carbon (DOC). These enhanced DOC effluxes occurred at a scale that decreases estimates for global organic carbon burial in coastal systems and should be considered as an impact of eutrophication on estuarine carbon budgets.


Assuntos
Carbono , Sedimentos Geológicos , Carbono/análise , Eutrofização , Nutrientes , Oceanos e Mares
6.
Mar Pollut Bull ; 100(1): 406-413, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323863

RESUMO

On high-energy rocky shores receiving treated wastewater, impacts are difficult to distinguish against a highly variable background and are localised due to rapid dilution. We demonstrate that nitrogen stable isotope values (δ(15)N) of rocky shore biota are highly sensitive to wastewater inputs. For macroalgae (Ulva lactuca and Endarachne binghamiae), grazing snails (Bembicium nanum and Nerita atramentosa), and predatory snails (Morula marginalba), δ(15)N was enriched near a wastewater outfall and declined with distance, returning to background levels within 290m. Any of these species therefore indicates the extent of influence of wastewater, allowing identification of an appropriate scale for studies of ecosystem impacts. For M. marginalba, significant regressions between δ(15)N and tissue copper, manganese, and zinc concentrations indicate a possible wastewater source for these metals. This suggests that δ(15)N is a proxy for exposure to wastewater contaminants, and may help to attribute variations in rocky shore communities to wastewater impacts.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Isótopos de Nitrogênio/análise , Nitrogênio/análise , Águas Residuárias/química , Animais , Biota , Ecossistema , Metais Pesados/química , Nitrogênio/química , Isótopos de Nitrogênio/química , Caramujos/metabolismo , Ulva/metabolismo
7.
Environ Sci Technol ; 47(23): 13258-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24261917

RESUMO

To determine the benthic transformation pathways and fate of carbon associated with secondary-treated pulp and paper mill (PPM) effluent, (13)C-labeled activated sludge biomass (ASB) and phytoplankton (PHY) were added, separately, to estuarine intertidal sediments. Over 28 days, (13)C was traced into sediment organic carbon, fauna, seagrass, bacteria, and microphytobenthos and into fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) from inundated sediments, and carbon dioxide (CO2(g)) from exposed sediments. There was greater removal of PHY carbon from sediments (~85% over 28 days) compared to ASB (~75%). Although there was similar (13)C loss from PHY and ASB plots via DIC (58% and 56%, respectively) and CO2(g) fluxes (<1%), DOC fluxes were more important for PHY (41%) than ASB (12%). Faster downward transport and loss suggest that fauna prefer PHY, due to its lability and/or toxins associated with ASB; this may account for different carbon pathways. Secondary-treated PPM effluent has lower oxygen demand than primary-treated effluent, but ASB accumulation may contribute to sediment anoxia, and respiration of ASB and PHY-derived DOC may make the water column more heterotrophic. This highlights the need to optimize secondary-treatment processes to control the quality and quantity of organic carbon associated with PPM effluent.


Assuntos
Isótopos de Carbono/análise , Sedimentos Geológicos/análise , Papel , Fitoplâncton/metabolismo , Esgotos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Dióxido de Carbono/análise , Isótopos de Carbono/administração & dosagem , Modelos Químicos , Tasmânia , Eliminação de Resíduos Líquidos/normas
8.
Environ Sci Technol ; 47(22): 12938-45, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131451

RESUMO

Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in situ isotopologue concentrations of dissolved CO2 ((12)CO2 and (13)CO2) and CH4 ((12)CH4 and (13)CH4) with CRDS via a closed loop gas equilibration device during a survey along an estuary and during a 40 h time series in a mangrove creek (ecosystem scale). A similar system was also connected to an in situ benthic chamber in a seagrass bed (community scale). Finally, a pulse-chase isotope enrichment experiment was conducted by measuring real-time release of (13)CO2 after addition of (13)C enriched phytoplankton to exposed intertidal sediments (microbial scale). Miller-Tans plots revealed complex transformation pathways and distinct isotopic source values of CO2 and CH4. Calculations of δ(13)C-DIC based on CRDS measured δ(13)C-CO2 and published fractionation factors were in excellent agreement with measured δ(13)C-DIC using isotope ratio mass spectroscopy (IRMS). The portable CRDS instrumentation used here can obtain real-time, high precision, continuous greenhouse gas data in lakes, rivers, estuaries and marine waters with less effort than conventional laboratory-based techniques.


Assuntos
Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Ciclo do Carbono , Ecossistema , Análise Espectral/métodos , Austrália , Dióxido de Carbono/análise , Isótopos de Carbono , Estuários , Modelos Lineares , Espectrometria de Massas , Metano/análise , Fitoplâncton/metabolismo , Fatores de Tempo
9.
Environ Sci Technol ; 45(8): 3400-6, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21438600

RESUMO

To determine the role of sediment denitrification in removing inputs of primary- (PE) and secondary-treated effluent (SE) from a pulp and paper mill (PPM), organic matter (OM) associated with PE (residual wood fiber) and SE (activated sludge biomass and phytoplankton) was added to estuarine intertidal sediments and denitrification rates were measured over 27 days. Labile sludge biomass and phytoplankton initially stimulated denitrification, including for pre-existing sediment N. After 2.5 d, however, denitrification was suppressed apparently due to microbial competition for N to process the refractory (high C:N) material remaining. Wood fiber suppressed denitrification throughout the experiment due to competition for N to process the refractory OM. Ultimate long-term denitrification suppression by phytoplankton is offset by initial enhanced denitrification rates. Although nutrient release during degradation of sludge biomass and wood fiber may stimulate phytoplankton production, N equivalent to 127% of the expected daily phytoplankton load was denitrified within 24 h, allowing for permanent removal of PPM-derived N. Compared to primary treatment, secondary treatment of PPM effluent has greater potential for N removal.


Assuntos
Sedimentos Geológicos/química , Resíduos Industriais/análise , Nitrogênio/análise , Papel , Poluentes Químicos da Água/análise , Amônia/análise , Biodegradação Ambiental , Desnitrificação , Água Doce/química , Sedimentos Geológicos/microbiologia , Interações Microbianas , Nitrogênio/metabolismo , Óxidos de Nitrogênio/análise , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Água do Mar/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Madeira/metabolismo
10.
Environ Sci Technol ; 44(19): 7411-7, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20839839

RESUMO

Stable isotope analysis of a novel combination of carbon and nitrogen pools traced inputs and processing of primary-treated (PE) and secondary-treated effluent (SE) from a paper and pulp mill (PPM) in a temperate Australian estuary. Distinct carbon stable isotope ratios of dissolved organic carbon (DOC) near the PPM outfall indicated large PE and reduced SE inputs of DOC. DOC was remineralized to dissolved inorganic carbon regardless of season, but rates were lower in winter. PE discharge in winter elevated DOC concentrations along much of the estuary. Distinct stable isotope ratios confirmed particulate organic matter (POM) input from PE and SE to the water column and into the sediment. This was relatively localized, indicating rapid POM settlement regardless of season. SE discharge increased nutrient inputs and enhanced algal productivity, particularly in summer when chlorophyll-a concentrations were elevated throughout the estuary. SE discharge reduced pCO(2) from levels associated with PE discharge. However, the estuary remained heterotrophic as subsequent respiration or decomposition of algal material offset reductions in PPM organic matter input. The influence of the PPM was apparent throughout the estuary, demonstrating the ability of anthropogenic inputs, and changes to these, to affect ecosystem functioning.


Assuntos
Carbono/química , Resíduos Industriais , Isótopos/análise , Nitrogênio/química , Poluentes da Água/química , Austrália
11.
Oecologia ; 138(2): 161-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14593525

RESUMO

Ecological applications of stable isotope analysis rely on different producers having distinct isotopic ratios to trace energy and nutrient transfer to consumers. Carbon (C) and nitrogen (N) are the usual elements analysed. We tested the hypothesis that producers unable to be separated using C and N would be separated by sulphur (S), by reviewing estuarine and marine food web studies using all three elements (total of 836 pairwise comparisons between producers). S had a wider range of values across all producers than C and N (S: 34.4, C: 23.3, N: 18.7 per thousand ), and a higher mean difference among producers (S: 9.3, C: 6.5, N: 3.3 per thousand ). We varied from 1 to 10 per thousand the distance producers must be apart to be considered separate. For each of these gap distances, S-separated producers tied on C and N in 40% or more of cases. Comparing the three elements individually, S had fewer tied pairs of producers for any gap distance than C or N. However, S also has higher within-producer variability. Statistical tests on simulated data showed that this higher variability caused S to be less effective than C for analysing differences among mean producer values, yet mixing models showed that S had the smallest confidence intervals around mean estimates of source contributions to consumers. We also examined the spatial and temporal scales over which S isotope signatures of the saltmarsh plant Spartina alterniflora varied. Differences between samples taken within tens of metres were smallest, but between samples hundreds of metres apart were as different as samples thousands of kilometres apart. The time between samples being taken did not influence S signatures. Overall, the use of S is recommended because it has a high probability of distinguishing the contribution of different producers to aquatic food webs. When two elements are employed, the combination of S and C separates more producers than any other combination.


Assuntos
Carbono/metabolismo , Monitoramento Ambiental/métodos , Cadeia Alimentar , Nitrogênio/metabolismo , Animais , Poaceae/fisiologia , Sensibilidade e Especificidade , Isótopos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...