Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 251(1): 111-123, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34370682

RESUMO

Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Niacinamida/análogos & derivados , Obesidade/tratamento farmacológico , Compostos de Piridínio/uso terapêutico , Animais , Respiração Celular/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Avaliação de Medicamentos , Intolerância à Glucose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Niacinamida/uso terapêutico , Obesidade/metabolismo
2.
Skelet Muscle ; 10(1): 5, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075690

RESUMO

BACKGROUND: Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11ß-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. METHODS: We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. RESULTS: H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. CONCLUSIONS: These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.


Assuntos
Músculo Esquelético/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Retículo Sarcoplasmático/metabolismo , Acetilcoenzima A/metabolismo , Animais , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Compostos de Piridínio/metabolismo
3.
Wellcome Open Res ; 3: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607371

RESUMO

Background: Skeletal muscle is central to whole body metabolic homeostasis, with age and disease impairing its ability to function appropriately to maintain health. Inadequate NAD + availability is proposed to contribute to pathophysiology by impairing metabolic energy pathway use. Despite the importance of NAD + as a vital redox cofactor in energy production pathways being well-established, the wider impact of disrupted NAD + homeostasis on these pathways is unknown. Methods: We utilised skeletal muscle myotube models to induce NAD + depletion, repletion and excess and conducted metabolic tracing to provide comprehensive and detailed analysis of the consequences of altered NAD + metabolism on central carbon metabolic pathways. We used stable isotope tracers, [1,2-13C] D-glucose and [U- 13C] glutamine, and conducted combined 2D-1H,13C-heteronuclear single quantum coherence (HSQC) NMR spectroscopy and GC-MS analysis. Results: NAD + excess driven by nicotinamide riboside (NR) supplementation within skeletal muscle cells resulted in enhanced nicotinamide clearance, but had no effect on energy homeostasis or central carbon metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) inhibition induced NAD + depletion and resulted in equilibration of metabolites upstream of glyceraldehyde phosphate dehydrogenase (GAPDH). Aspartate production through glycolysis and TCA cycle activity was increased in response to low NAD +, which was rapidly reversed with repletion of the NAD + pool using NR. NAD + depletion reversibly inhibits cytosolic GAPDH activity, but retains mitochondrial oxidative metabolism, suggesting differential effects of this treatment on sub-cellular pyridine pools. When supplemented, NR efficiently reversed these metabolic consequences. However, the functional relevance of increased aspartate levels after NAD + depletion remains unclear, and requires further investigation. Conclusions: These data highlight the need to consider carbon metabolism and clearance pathways when investigating NAD + precursor usage in models of skeletal muscle physiology.

4.
Mol Metab ; 6(8): 819-832, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752046

RESUMO

OBJECTIVE: Augmenting nicotinamide adenine dinucleotide (NAD+) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD+. Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD+ from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. METHODS: We exploited expression profiling of muscle NAD+ biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD+ recycling to evaluate NMN and NR utilization. RESULTS: Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD+. NAMPT inhibition depletes muscle NAD+ availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD+ in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD+. Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD+ availability. CONCLUSIONS: These results identify skeletal muscle cells as requiring NAMPT to maintain NAD+ availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD+ availability.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Compostos de Piridínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...