Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 3(12): e00484, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29322107

RESUMO

Balance control is essential for safe walking. Adding haptic input through light touch may improve walking balance; however, evidence is limited. This research investigated the effect of added haptic input through light touch in healthy young adults during challenging walking conditions. Sixteen individuals walked normally, in tandem, and on a compliant, low-lying balance beam with and without light touch on a railing. Three-dimensional kinematic data were captured to compute stride velocity (m/s), relative time spent in double support (%DS), a medial-lateral margin of stability (MOSML) and its variance (MOSMLCV), as well as a symmetry index (SI) for the MOSML. Muscle activity was evaluated by integrating electromyography signals for the soleus, tibialis anterior, and gluteus medius muscles bilaterally. Adding haptic input decreased stride velocity, increased the %DS, had no effect on the MOSML magnitude, decreased the MOSMLCV, had no effect on the SI, and increased activity of most muscles examined during normal walking. During tandem walking, stride velocity and the MOSMLCV decreased, while %DS, MOSML magnitude, SI, and muscle activity did not change with light touch. When walking on a low-lying, compliant balance beam, light touch had no effect on walking velocity, MOSML magnitude, or muscle activity; however, the %DS increased and the MOSMLCV and SI decreased when lightly touching a railing while walking on the balance beam. The decreases in the MOSMLCV with light touch across all walking conditions suggest that adding haptic input through light touch on a railing may improve balance control during walking through reduced variability.

2.
Gait Posture ; 37(4): 516-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23031626

RESUMO

Parkinson's disease (PD) causes instability and difficulty adapting to changing environmental and task demands. We examined the effects of PD on the adaptation of gait termination (GT) on a slippery surface under unexpected and cued circumstances. An unexpected slip perturbation during GT was followed by a slip perturbation during GT under two conditions: planned over multiple steps and cued one step prior to GT. Feed forward and feedback-based responses to the perturbation were compared to determine (1) how PD affects the ability to integrate adaptive feed forward and feedback-based GT strategies on a slippery surface, (2) if adaptations can be implemented when GT is required within one step, and (3) if behaviour changes with repeated exposure. Similar to the control group (n=10), the PD group (n=8) adapted and integrated feed forward and feedback-based components of GT under both stop conditions. Feed forward adaptations included a shorter, wider step, and appropriate stability margin modifications. Feedback-based adaptations included a longer, wider subsequent step. When cued to stop quickly, both groups maintained most of these adaptations: foot angle at contact increased in the first cued stop but adapted with practice. The group with PD differed in their ability to adapt GT with slower, wider steps and less stability.


Assuntos
Adaptação Fisiológica , Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Acidentes por Quedas , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Sinais (Psicologia) , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Equilíbrio Postural , Desempenho Psicomotor
3.
Exp Brain Res ; 187(4): 603-11, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18327574

RESUMO

We examined changes in the motor organization of postural control in response to continuous, variable amplitude oscillations evoked by a translating platform and explored whether these changes reflected implicit sequence learning. The platform underwent random amplitude (maximum +/- 15 cm) and constant frequency (0.5 Hz) oscillations. Each trial was composed of three 15-s segments containing seemingly random oscillations. Unbeknownst to participants, the middle segment was repeated in each of 42 trials on the first day of testing and in an additional seven trials completed approximately 24 h later. Kinematic data were used to determine spatial and temporal components of total body centre of mass (COM) and joint segment coordination. Results showed that with repeated trials, participants reduced their magnitude of COM displacement, shifted from a COM phase lag to a phase lead relative to platform motion and increased correlations between ankle/platform motion and hip/platform motion as they shifted from an ankle strategy to a multi-segment control strategy involving the ankle and hip. Maintenance of these changes across days provided evidence for learning. Similar improvements for the random and repeated segments, indicated that participants did not exploit the sequence of perturbations to improve balance control. Rather, the central nervous system may have been tuning into more general features of platform motion. These findings provide important insight into the generalizabilty of improved compensatory balance control with training.


Assuntos
Adaptação Fisiológica/fisiologia , Equilíbrio Postural , Postura/fisiologia , Aprendizagem Seriada/fisiologia , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Desempenho Psicomotor , Retenção Psicológica/fisiologia , Análise e Desempenho de Tarefas
4.
J Neurophysiol ; 93(1): 64-70, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15295010

RESUMO

There are three common ways by which to successfully terminate gait: decreased acceleration of whole-body center of mass (COM) through a flexor synergy in the trail leg, increased deceleration of whole-body COM through an extensor synergy in the front limb, and an energy/momentum transfer to dissipate any remaining momentum if the first two strategies are unsuccessful. Healthy individuals were asked to stop on a slippery surface while we examined their unexpected response to the slippery surface. Kinetic data from the forceplates revealed lower braking forces in the slip trials compared with normal gait-termination trials. Subjects were unable to control their center of pressure (COP) to manipulate the COM as revealed by increased deviations and maximum absolute ranges of COP movement. Subject COM deviated farther in both horizontal planes and lowered further during the slip compared with normal gait-termination trials. Arm movements were effective in dissipating forward COM movement. In addition, there likely was a transfer of forward to lateral momentum to stop forward progression. All recorded muscle activity in the lower limbs and back increased during the slip to provide support to the lower limbs and correct upright balance. The trailing limb shortened its final step to provide support to the lowering COM. The balance-correction response seen here resembles previous reactions to perturbations during locomotion suggesting there is a generalized strategy employed by the nervous system to correct for disturbances and maintain balance.


Assuntos
Marcha/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Tato/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Tempo de Reação/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...