Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 32(9): 2334-2345, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900069

RESUMO

Obtaining extensive sequencing of an intact protein is essential in order to simultaneously determine both the nature and exact localization of chemical and genetic modifications which distinguish different proteoforms arising from the same gene. To effectively achieve such characterization, it is necessary to take advantage of the analytical potential offered by the top-down mass spectrometry approach to protein sequence analysis. However, as a protein increases in size, its gas-phase dissociation produces overlapping, low signal-to-noise fragments. The application of advanced ion dissociation techniques such as electron transfer dissociation (ETD) and ultraviolet photodissociation (UVPD) can improve the sequencing results compared to slow-heating techniques such as collisional dissociation; nonetheless, even ETD- and UVPD-based approaches have thus far fallen short in their capacity to reliably enable extensive sequencing of proteoforms ≥30 kDa. To overcome this issue, we have applied proton transfer charge reduction (PTCR) to limit signal overlap in tandem mass spectra (MS2) produced by ETD (alone or with supplemental ion activation, EThcD). Compared to conventional MS2 experiments, following ETD/EThcD MS2 with PTCR MS3 prior to m/z analysis of deprotonated product ions in the Orbitrap mass analyzer proved beneficial for the identification of additional large protein fragments (≥10 kDa), thus improving the overall sequencing and in particular the coverage of the central portion of all four analyzed proteins spanning from 29 to 56 kDa. Specifically, PTCR-based data acquisition led to 39% sequence coverage for the 56 kDa glutamate dehydrogenase, which was further increased to 44% by combining fragments obtained via HCD followed by PTCR MS3.

2.
Genome Res ; 15(9): 1284-91, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16109971

RESUMO

Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Poaceae/genética , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Genes de Plantas , Repetições Minissatélites , Dados de Sequência Molecular , Oryza/classificação , Mapeamento Físico do Cromossomo , Poaceae/classificação , Proteoma , Especificidade da Espécie , Zea mays/classificação , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...