Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32257367

RESUMO

Over the last two decades, the pig population in Africa has grown rapidly, reflecting the increased adoption of pig production as an important economic activity. Of all species, pigs are likely to constitute a greater share of the growth in the livestock subsector. However, constraints such as respiratory infectious diseases cause significant economic losses to the pig industry worldwide. Compared to industrialized countries, the occurrence and impacts of respiratory diseases on pig production in Africa is under-documented. Hence, knowledge on prevalence and incidence of economically important swine respiratory pathogens in pigs in Africa is necessary to guide interventions for prevention and control. The purpose of this review was to document the current status of research on five important respiratory pathogens of swine in Africa to inform future research and interventions. The pathogens included were porcine reproductive and respiratory syndrome virus (PPRSv), porcine circovirus 2 (PCV2), Mycoplasma hyopneumoniae (M. hyopneumoniae), Actinobacillus pleuropneumoniae (APP) and swine influenza A viruses (IAV). For this review, published articles were obtained using Harzing's Publish or Perish software tool from GoogleScholar. Articles were also sourced from PubMed, ScienceDirect, FAO and OIE websites. The terms used for the search were Africa, swine or porcine, respiratory pathogens, M. hyopneumoniae, APP, PCV2, PPRSv, IAV, prevention and control. In all, 146 articles found were considered relevant, and upon further screening, only 85 articles were retained for the review. The search was limited to studies published from 2000 to 2019. Of all the studies that documented occurrence of the five respiratory pathogens, most were on IAV (48.4%, n = 15), followed by PCV2 (25.8%, n = 8), PPRSv (19.4%, n = 6), while only one study (3.2%, n = 1) reported APP and M. hyopneumoniae. This review highlights knowledge and information gaps on epidemiologic aspects as well as economic impacts of the various pathogens reported in swine in Africa, which calls for further studies.

2.
J Anim Physiol Anim Nutr (Berl) ; 102(4): 1091-1101, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29761557

RESUMO

This study evaluated the effects of increasing concentrations of spray-dried yeast cell wall (YCW) in diets for healthy adult cats on apparent nutrient digestibility and on bacterial composition and fermentation products in the stool. Fourteen cats with an average weight of 4.40 ± 1.05 kg and an average age of 6.2 ± 0.54 years were used and assigned to treatments in an unbalanced randomized block design (by experimental period) with two blocks and three or four cats per diet in each block. Treatments included: control (0% YCW), 0.2% YCW, 0.4% YCW and 0.6% YCW, totalling seven animals per experimental diet. We found that YCW did not affect body weight, nutrient and food intake, faecal production, faecal score, faecal pH or urine output (p > .05). Regarding faecal bacteria, we observed a linear reduction in Clostridium perfringens, a quadratic reduction in Escherichia coli, and linear increases in Bifidobacterium spp. and Lactobacillus spp. (p < .05) with the inclusion of YCW. Regarding the faecal short-chain fatty acid profile, butyrate, valerate, total biogenic amines, putrescine, cadaverine and histamine increased linearly (p < .05) with the inclusion of YCW. It was concluded that in healthy adult cats, consumption of YCW modulates the faecal bacterial populations, with an increased presence of beneficial bacteria and a reduction in some potentially pathogenic bacteria. It was concluded that YCW modulated the levels of fermentation products. There was an increase in fermentation products coming from carbohydrate metabolism, an important effect that can potentially benefit the intestinal health of cats. The consumption of YCW also increased the fermentation of nitrogen compounds, which have not yet been defined as deleterious or beneficial. The fermentability of carbohydrates and nitrogen compounds may be associated. Therefore, YCW may cause rapid fermentation of both classes of compounds by enhancing the fermentability of one class.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Gatos/metabolismo , Fezes/microbiologia , Fermentação , Ração Animal , Animais , Parede Celular/metabolismo , Dieta , Leveduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...