Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 780: 146608, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030311

RESUMO

Ibuprofen (IBP) is a non-steroidal anti-inflammatory drug released into the environment through hospital and medical effluents, pharmaceutical wastewater and veterinary use. The aim of this paper is to review the empirical findings on the adsorption of IBP from aqueous media. A preliminary ecotoxicological assessment confirmed the environmental risk of IBP in the aqueous environment. Open literature works considered in this review were for the past decade (2010-2020). Carbon-based adsorbents are the best class of adsorbent for the uptake of IBP and the highest reported maximum adsorption capacity (qmax) for IBP is 496.1 mg/g by SWCNTs. The range of adsorption capacities for IBP uptake in this review is between 0.0496 and 496.1 mg/g. The mechanism of uptake is majorly by hydrophobic interactions, π - π stacking, hydrogen bonds, electrostatic interactions and dipole-dipole interaction. IBP uptake was best fit to a wide variety of isotherm models but was well suited to the pseudo-second order kinetics model. The thermodynamics of IBP uptake depends majorly on the nature of the adsorbent and desorption from the solid phase is based on an appropriate choice of the eluent. Knowledge gaps were observed in used adsorbent disposal and process improvement. In the future, interest would increase in scale-up, industrial applications and practical utilisation of the research findings which would help in sustainable water resource management.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Ibuprofeno , Cinética , Termodinâmica , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...