Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 95(1): 16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281704

RESUMO

Reprogramming by nuclear transfer (NT) cloning forces cells to lose their lineage-specific epigenetic marks and reacquire totipotency. This process often produces molecular anomalies that compromise clone development. We hypothesized that quiescence alters the epigenetic status of somatic NT donor cells and elevates their reprogrammability. To test this idea, we compared chromatin composition and cloning efficiency of serum-starved quiescent (G0) fibroblasts versus nonstarved mitotically selected (G1) controls. We show that G0 chromatin contains reduced levels of Polycomb group proteins EED, SUZ12, PHC1, and RING2, as well as histone variant H2A.Z. Using quantitative confocal immunofluorescence microscopy and fluorometric enzyme-linked immunosorbent assay, we further show that G0 induced DNA and histone hypomethylation, specifically at H3K4me3, H3K9me2/3 and H3K27me3, but not H3K9me1. Collectively, these changes resulted in a more relaxed G0 chromatin state. Following NT, G0 donors developed into blastocysts that retained H3K9me3 hypomethylation, both in the inner cell mass and trophectoderm. G0 blastocysts from different cell types and cell lines developed significantly better into adult offspring. In conclusion, serum starvation induced epigenetic changes, specifically hypotrimethylation, that provide a mechanistic correlate for increased somatic cell reprogrammability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética , Fibroblastos/citologia , Mitose/fisiologia , Animais , Bovinos , Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Histonas/metabolismo , Técnicas de Transferência Nuclear
2.
Biol Reprod ; 76(2): 268-78, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17050861

RESUMO

Our objectives were to compare the cellular and molecular effects of aggregating bovine embryonic vs. somatic cell nuclear transfer (ECNT vs. SCNT) embryos and to determine whether aggregation can improve cattle cloning efficiency. We reconstructed cloned embryos from: 1) morula-derived blastomeres, 2) six adult male ear skin fibroblast lines, 3) one fetal female lung fibroblast line (BFF), and 4) two transgenic clonal strains derived from BFF. Embryos were cultured either singularly (1X) or as aggregates of three (3X). In vitro-fertilized (IVF) 1X and 3X embryos served as controls. After aggregation, the in vitro development of ECNT but not that of SCNT or IVF embryos was strongly compromised. The inner cell mass (ICM), total cell (TC) numbers, and ICM:TC ratios significantly increased for all the aggregates. The relative concentration of the key embryonic transcript POU5F1 (or OCT4) did not correlate with these increases, remaining unchanged in the ECNT and IVF aggregates and decreasing significantly in the SCNT aggregates. Overall, the IVF and 3X ECNT but not the 1X ECNT embryos had significantly higher relative POU5F1 levels than the SCNT embryos. High POU5F1 levels correlated with high in vivo survival, while no such correlation was noted for the ICM:TC ratios. Development to weaning was more than doubled in the ECNT aggregates (10/51 or 20% vs. 7/85 or 8% for 3X vs. 1X, respectively; P < 0.05). In contrast, the SCNT and IVF controls showed no improvement in survival. These data reveal striking biological differences between embryonic and somatic clones in response to aggregation.


Assuntos
Bovinos/embriologia , Clonagem de Organismos , Técnicas de Transferência Nuclear , Técnicas de Reprodução Assistida , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos/crescimento & desenvolvimento , Blastocisto , Massa Celular Interna do Blastocisto , Células Cultivadas , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Técnicas In Vitro , Masculino , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sobrevida , Trofoblastos/citologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA