Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 134, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539199

RESUMO

BACKGROUND: Recent reports have highlighted the significance of plant bioactive components in drug development targeting neurodegenerative disorders such as Alzheimer's disease (AD). Thus, the current study assessed antioxidant activity and enzyme inhibitory activity of the aqueous extract of Talinum triangulare leave (AETt) as well as molecular docking/simulation of the identified phytonutrients against human cholinesterase activities. METHODS: In vitro assays were carried out to assess the 2,2- azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) cation radicals and cholinesterase inhibitory activities of AETt using standard protocols. High performance liquid chromatography coupled with diode-array detection (HPLC-DAD) was employed to identify compounds in AETt. Also, for computational analysis, identified bioactive compounds from AETt were docked using Schrodinger's GLIDE against human cholinesterase obtained from the protein data bank ( https://www.rcsb.org/ ). RESULTS: The results revealed that AETt exhibited a significant concentration-dependent inhibition against ABTS cation radicals (IC50 = 308.26 ± 4.36 µg/ml) with butylated hydroxytoluene (BHT) as the reference. Similarly, AETt demonstrated a significant inhibition against acetylcholinesterase (AChE, IC50 = 326.49 ± 2.01 µg/ml) and butyrylcholinesterase (BChE, IC50 = 219.86 ± 4.13 µg/ml) activities with galanthamine as the control. Molecular docking and simulation analyses revealed rutin and quercetin as potential hits from AETt, having showed strong binding energies for both the AChE and BChE. In addition, these findings were substantiated by analyses, including radius of gyration, root mean square fluctuation, root mean square deviation, as well as mode similarity and principal component analyses. CONCLUSION: Overall, this study offers valuable insights into the interactions and dynamics of protein-ligand complexes, offering a basis for further drug development targeting these proteins in AD.


Assuntos
Doença de Alzheimer , Benzotiazóis , Inibidores da Colinesterase , Ácidos Sulfônicos , Tetra-Hidronaftalenos , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/análise , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Doença de Alzheimer/tratamento farmacológico , Cátions
2.
Pan Afr Med J ; 37: 285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33654512

RESUMO

INTRODUCTION: the recent zoonotic coronavirus virus outbreak of a novel type (COVID-19) has necessitated the adequate understanding of the evolutionary pathway of zoonotic viruses which adversely affects human populations for therapeutic constructs to combat the pandemic now and in the future. METHODS: we analyzed conserved domains of the severe acute respiratory coronavirus 2 (SARS-CoV-2) for possible targets of viral entry inhibition in host cells, evolutionary relationship of human coronavirus (229E) and zoonotic coronaviruses with SARS-CoV-2 as well as evolutionary relationship between selected SARS-CoV-2 genomic data. RESULTS: conserved domains with antagonistic action on host innate antiviral cellular mechanisms in SARS-CoV-2 include nsp 11, nsp 13 etc. Also, multiple sequence alignments of the spike (S) gene protein of selected candidate zoonotic coronaviruses alongside the S gene protein of the SARS-CoV-2 revealed closest evolutionary relationship (95.6%) with pangolin coronaviruses (S) gene. Clades formed between Wuhan SARS-CoV-2 phylogeny data and five others suggests viral entry trajectory while revealing genomic and protein SARS-CoV-2 data from Philippines as early ancestors. CONCLUSION: phylogeny of SARS-CoV-2 genomic data suggests profiling in diverse populations with and without the outbreak alongside migration history and racial background for mutation tracking and dating of viral subtype divergence which is essential for effective management of present and future zoonotic coronavirus outbreaks.


Assuntos
COVID-19/virologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Genoma Viral , Animais , Simulação por Computador , Coronavirus/classificação , Coronavirus/genética , Surtos de Doenças , Genômica , Humanos , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Internalização do Vírus , Zoonoses/virologia
4.
Toxicol Rep ; 4: 530-534, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29657919

RESUMO

Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...