Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e16096, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215795

RESUMO

Over the past few years, there has been growing interest in using inorganic quaternary nitrate-based molten salt mixtures as a highly effective heat transfer fluid (HTF) for concentrated power plants, primarily because they can achieve low melting temperatures. However, the high viscosity of these salt mixtures is still a significant challenge that hinders their widespread adoption. The high viscosity leads to high pumping power requirements, which increases operational costs, and reduces the efficiency of the Rankine cycle. To address this challenge, this study developed and characterized a novel quaternary molten salt, focusing on the effect of LiNO3 additions on the salt's viscosity, thermal conductivity, melting point temperature, heat capacity, and thermal stability. The quaternary mixture comprised KNO3, LiNO3, Ca(NO3)2, and NaNO2, with varying percentages of each salt. The study utilized various standard techniques to examine the characteristics of the developed mixture. Results showed that increasing LiNO3 content led to a decrease in melting temperature, higher heat capacity, improved thermal stability, conductivity, and reduced viscosity at solidification temperature. The lowest endothermic peak for the new mixture emerged at 73.5 °C, which is significantly lower than that of commercial Hitec and Hitec XL, indicating better potential for use as a heat transfer fluid for concentrated solar thermal power plant applications. Furthermore, the thermal stability results showed high stability up to 590 °C for all the samples examined. Overall, the new quaternary molten salt shows promise as a potential replacement for current organic synthetic oil, offering a more efficient solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...