Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Angiogenesis ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498232

RESUMO

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.

3.
Lab Invest ; 103(6): 100123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36849037

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , Idoso , Trombospondina 1/metabolismo , Granzimas/metabolismo , Proteólise , Degeneração Macular/complicações , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/metabolismo
4.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766809

RESUMO

Inflammation is key to the pathogenesis of diabetic retinopathy (DR). This prospective study investigated alterations in inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) in 41 people with type 1 diabetes (T1D), sub-grouped into mild non-proliferative DR (mNPDR; n = 13) and active and inactive (each n = 14) PDR. Age/gender-matched healthy controls (n = 13) were included. PBMCs were isolated from blood samples. Intracellular cytokine expression by PBMCs after 16-h stimulation (either E. coli lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate plus ionomycin, D-glucose or D-mannitol) were assessed by flow cytometry. Cytokine production in plasma, non-stimulated and LPS-stimulated PBMC supernatant was also assessed. Increased BMC IL-10 secretion and reduced expression of IL-6 and IFN-γ in CD3+ cells were observed in mNPDR. Reduced IL-6 and IL-10 secretion, and higher levels of intracellular IL-6 expression, especially in CD11b+ PBMCs, was detected in aPDR; levels were positively correlated with DR duration. Patients with T1D demonstrated increased intracellular expression of IL-17A in myeloid cells and reduced IFN-γ expression in CD3+ cells. Plasma levels of IL-1R1 were increased in mNPDR compared with controls. Results suggest that elevated PBMC-released IL-10, IL-6, in particular myeloid-produced IL-17A, may be involved in early stages of DR. IL-6-producing myeloid cells may play a role in PDR development.


Assuntos
Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Escherichia coli/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Projetos Piloto , Estudos Prospectivos
5.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670985

RESUMO

The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.

6.
Ophthalmol Sci ; 2(2): 100150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36249680

RESUMO

Purpose: To evaluate the therapeutic benefit of a novel peptide, ALM201, in ocular pathologic vascularization. Design: Experimental study in mouse, rat, and rabbit animal models. Participants: Ten-week-old Lister Hooded male rats, 8-week-old Brown Norway male rats, 9-day-old C57BL/6J mice, and 12-month-old New Zealand male rabbits. Methods: Corneal vascularization was scored for vessel density and vessel distance to suture in a rat corneal suture model. Ocular penetration and biodistribution were evaluated by matrix-assisted laser desorption/ionization mass spectrometry imaging after topical ALM201 application to rabbit eyes. A mouse choroidal sprouting assay, with aflibercept as positive control, was used to evaluate choroidal neovascularization (CNV) in the posterior segment tissue. Efficacy of topical ALM201 was assessed using a rat laser CNV model of neovascular age-related macular degeneration. Main Outcome Measures: Clinical scoring and histologic analysis of vascularized corneas, sprouting area, lesion size, and vessel leakiness in posterior segments. Results: Assessment of ALM201 treatment in the rat corneal suture model showed a significant decrease in vessel density (P = 0.0065) and vessel distance to suture (P = 0.021) compared with vehicle control (phosphate-buffered saline [PBS]). Infiltration of inflammatory cells into the corneal stroma also was reduced significantly compared with PBS (724.5 ± 122 cells/mm2 vs. 1837 ± 195.9 cells/mm2, respectively; P = 0.0029). Biodistribution in rabbit eyes confirmed ALM201 bioavailability in anterior and posterior ocular segments 1 hour after topical instillation. ALM201 treatment significantly suppressed choroid vessel sprouting when compared with PBS treatment (44.5 ± 14.31 pixels vs. 120.9 ± 33.37 pixels, respectively; P = 0.04) and was not inferior to aflibercept (65.63 ± 11.86 pixels; P = 0.7459). Furthermore, topical ALM201 significantly improved vessel leakiness (leakage scores: 2.1 ± 0.7 vs. 2.9 ± 0.1; P = 0.0274) and lesion size (144,729 ± 33,239 µm3 vs. 187,923 ± 28,575 µm3; P = 0.03) in the rat laser CNV model when compared with topical PBS vehicle. Conclusions: ALM201 is a promising novel molecule with anti-inflammatory and antivascularization activity and is a strong candidate to meet the clinical need of a new, topically delivered therapeutic agent for treating inflammation and pathologic vascularization in the anterior and posterior segments of the eye.

7.
Front Pharmacol ; 13: 980742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204224

RESUMO

Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.

8.
Arterioscler Thromb Vasc Biol ; 40(12): e367-e379, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115265

RESUMO

OBJECTIVE: Myeloid cells are critically involved in inflammation-induced angiogenesis, although their pathogenic role in the ischemic retina remains controversial. We hypothesize that myeloid cells contribute to pathogenic neovascularization in retinopathy of prematurity through STAT3 (signal transducer and activator of transcription 3) activation. Approach and Results: Using the mouse model of oxygen-induced retinopathy, we show that myeloid cells (CD45+IsolectinB4 [IB4]+) and particularly M2-type macrophages (CD45+ Arg1+), comprise a major source of STAT3 activation (pSTAT3) in the immature ischemic retina. Most of the pSTAT3-expressing myeloid cells concentrated at the hyaloid vasculature and their numbers were strongly correlated with the severity of pathogenic neovascular tuft formation. Pharmacological inhibition of STAT3 reduced the load of IB4+ cells in the hyaloid vasculature and significantly reduced the formation of pathogenic neovascular tufts during oxygen-induced retinopathy, leading to improved long-term visual outcomes (ie, increased retinal thickness and scotopic b-wave electroretinogram responses). Genetic deletion of SOCS3 (suppressor of cytokine signaling 3), an endogenous inhibitor of STAT3, in myeloid cells, enhanced pathological and physiological neovascularization in oxygen-induced retinopathy, indicating that myeloid-STAT3 signaling is crucial for retinal angiogenesis. CONCLUSIONS: Circulating myeloid cells may migrate to the immature ischemic retina through the hyaloid vasculature and contribute to retinal neovascularization via activation of STAT3. Understanding how STAT3 modulates myeloid cells for vascular repair/pathology may provide novel therapeutic options in pathogenic angiogenesis.


Assuntos
Macrófagos/metabolismo , Oxigênio , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Retinopatia da Prematuridade/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Animais Recém-Nascidos , Antraquinonas/farmacologia , Modelos Animais de Doenças , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/prevenção & controle , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais , Sulfonamidas/farmacologia , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
9.
Curr Eye Res ; 45(9): 1144-1154, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31997663

RESUMO

BACKGROUND/AIMS: The aim of this study was to investigate the relationship between alterations in circulating leukocytes and the initiation and progression of DR in people with type 1 diabetes (T1D). METHODS: Forty-one patients with T1D [13 mild non-proliferative DR (mNPDR), 14 active proliferative DR (aPDR) and 14 inactive PDR (iPDR)], and 13 age- and gender-matched healthy controls were recruited prospectively. Circulating leukocytes, including CD4+ and CD8+ T-cells, CD14+CD16-, CD14-CD16+ and CD14+CD16+ monocytes; CD16+HLA-DR- neutrophils, CD19+ B-cells and CD56+ natural killer cells and their cell surface adhesion molecules and chemokine receptors (HLA-DR, CD62L, CCR2, CCR5, CD66a, CD157 and CD305) were examined by flow cytometry. RESULTS: In DR patients, compared to healthy controls, increased proportions of neutrophils (p = .0152); reduced proportions of lymphocytes (p = .0002), HLA-DR+ leukocytes (p = .0406) and non-classical monocytes (p = .0204); and reduced expression of CD66a (p = .0048) and CD157 (p = .0007) on CD4+ T cells were observed. Compared to healthy controls, CD19+ B cells were reduced at the mNPDR but not aPDR patients. Total lymphocytes, CD4+ T cells and CD8+ T cells progressively decreased whereas neutrophils, the neutrophil/lymphocyte ratio and the neutrophil/CD4+ ratio progressively increased from early to late stages of DR, reaching statistical significance at the aPDR stage. Longer diabetes duration was associated with a reduced proportion of CD8+ T cells (p = .002) and increased neutrophil/CD8+ ratio (p = .033). CONCLUSIONS: In this pilot study, DR is associated with increased innate cellular immunity especially neutrophils and reduced adaptive cellular immunity particularly lymphocytes. Impaired B-cell immunity may play a role in the initiation of DR; whereas impaired T-cell immunity with increased neutrophil response may contribute to progression of DR from non-proliferative to proliferative stages in T1D patients. Large multicenter studies are needed to further understand the immune dysregulation in DR initiation and progression.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Retinopatia Diabética/imunologia , Leucócitos/imunologia , Adulto , Idoso , Antígenos de Superfície/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Citometria de Fluxo , Humanos , Imunidade Celular , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , Projetos Piloto , Receptores de Quimiocinas/imunologia
10.
J Neuroinflammation ; 16(1): 138, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286987

RESUMO

BACKGROUND: Leukostasis is a key patho-physiological event responsible for capillary occlusion in diabetic retinopathy. Circulating monocytes are the main cell type entrapped in retinal vessels in diabetes. In this study, we investigated the role of the signal transducer and activator of transcription 3 (STAT3) pathway in diabetes-induced immune cell activation and its contribution to retinal microvascular degeneration. METHODS: Forty-one patients with type 1 diabetes (T1D) [mild non-proliferative diabetic retinopathy (mNPDR) (n = 13), active proliferative DR (aPDR) (n = 14), inactive PDR (iPDR) (n = 14)] and 13 age- and gender-matched healthy controls were recruited to the study. C57BL/6 J WT mice, SOCS3fl/fl and LysMCre/+SOCS3fl/fl mice were rendered diabetic by Streptozotocin injection. The expression of the phosphorylated human and mouse STAT3 (pSTAT3), mouse LFA-1, CD62L, CD11b and MHC-II in circulating immune cells was evaluated by flow cytometry. The expression of suppressor of cytokine signalling 3 (SOCS3) was examined by real-time RT-PCR. Mouse plasma levels of cytokines were measured by Cytometric Beads Array assay. Retinal leukostasis was examined following FITC-Concanavalin A perfusion and acellular capillary was examined following Isolectin B4 and Collagen IV staining. RESULTS: Compared to healthy controls, the expression of pSTAT3 in circulating leukocytes was statistically significantly higher in mNPDR but not aPDR and was negatively correlated with diabetes duration. The expression of pSTAT3 and its inhibitor SOCS3 was also significantly increased in leukocytes from diabetic mice. Diabetic mice had higher plasma levels of IL6 and CCL2 compared with control mice. LysMCre/+SOCS3fl/fl mice and SOCS3fl/fl mice developed comparative levels of diabetes, but leukocyte activation, retinal leukostasis and number of acellular capillaries were statistically significantly increased in LysMCre/+SOCS3fl/fl diabetic mice. CONCLUSION: STAT3 activation in circulating immune cells appears to contribute to retinal microvascular degeneration and may be involved in DR initiation in T1D.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Leucócitos Mononucleares/metabolismo , Microvasos/metabolismo , Vasos Retinianos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Estudos Transversais , Diabetes Mellitus Tipo 1/imunologia , Retinopatia Diabética/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/imunologia , Vasos Retinianos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...