Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 110: 103887, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957194

RESUMO

All levels of the unique hierarchical structure of bone, consisting of collagen and hydroxyapatite crystals at the nanoscale to osteon/lamellae structures at the microscale, contribute to its characteristic toughness and material properties. Elements of bone's density and size contribute to bone quantity (or bone mass), whereas elements of bone's material composition, material properties, internal structure, and organization describe bone quality. Bone quantity and quality can be degraded by factors such as aging, disease, treatments, and irradiation, compromising its ability to resist fracture and sustain loading. Accessing the morphology and architecture of bone at the microscale to quantify microstructural features and assess the degree of mineralization and path of crack propagation in bone provides crucial information on how these factors are influencing bone quantity and quality. Synchrotron radiation micro-computed tomography (SRµCT) was first used to assess bone structure at the end of the 1990's. One of the main advantages of the technique is that it enables accurate three-dimensional (3D), non-destructive quantification of structure while traditional histomorphometry on histological sections is inherantly destructive to the sample and two-dimensional (2D). Additionally, SRµCT uses monochromatic, high-flux X-ray beams to provide high-resolution and high-contrast imaging of bone samples. This allows the quantification of small microstructural features (e.g. osteocyte lacunae, canals, trabeculae, microcracks) and direct gray value compositional mapping (e.g. mineral quantification, cement lines) with greater speed and fidelity than lab-based micro-computed tomography. In this article, we review how SRµCT has been applied to bone research to elucidate the mechanisms by which bone aging, disease, and other factors affect bone fragility and resistance to fracture.


Assuntos
Osso e Ossos , Síncrotrons , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Ósteon , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...