Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Inf Sci Syst ; 12(1): 38, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39006830

RESUMO

Laryngeal cancer (LC) represents a substantial world health problem, with diminished survival rates attributed to late-stage diagnoses. Correct treatment for LC is complex, particularly in the final stages. This kind of cancer is a complex malignancy inside the head and neck region of patients. Recently, researchers serving medical consultants to recognize LC efficiently develop different analysis methods and tools. However, these existing tools and techniques have various problems regarding performance constraints, like lesser accuracy in detecting LC at the early stages, additional computational complexity, and colossal time utilization in patient screening. Deep learning (DL) approaches have been established that are effective in the recognition of LC. Therefore, this study develops an efficient LC Detection using the Chaotic Metaheuristics Integration with the DL (LCD-CMDL) technique. The LCD-CMDL technique mainly focuses on detecting and classifying LC utilizing throat region images. In the LCD-CMDL technique, the contrast enhancement process uses the CLAHE approach. For feature extraction, the LCD-CMDL technique applies the Squeeze-and-Excitation ResNet (SE-ResNet) model to learn the complex and intrinsic features from the image preprocessing. Moreover, the hyperparameter tuning of the SE-ResNet approach is performed using a chaotic adaptive sparrow search algorithm (CSSA). Finally, the extreme learning machine (ELM) model was applied to detect and classify the LC. The performance evaluation of the LCD-CMDL approach occurs utilizing a benchmark throat region image database. The experimental values implied the superior performance of the LCD-CMDL approach over recent state-of-the-art approaches.

2.
PeerJ Comput Sci ; 9: e1663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077610

RESUMO

The neurological ailment known as Parkinson's disease (PD) affects people throughout the globe. The neurodegenerative PD-related disorder primarily affects people in middle to late life. Motor symptoms such as tremors, muscle rigidity, and sluggish, clumsy movement are common in patients with this disorder. Genetic and environmental variables play significant roles in the development of PD. Despite much investigation, the root cause of this neurodegenerative disease is still unidentified. Clinical diagnostics rely heavily on promptly detecting such irregularities to slow or stop the progression of illnesses successfully. Because of its direct correlation with brain activity, electroencephalography (EEG) is an essential PD diagnostic technique. Electroencephalography, or EEG, data are biomarkers of brain activity changes. However, these signals are non-linear, non-stationary, and complicated, making analysis difficult. One must often resort to a lengthy human labor process to accomplish results using traditional machine-learning approaches. The breakdown, feature extraction, and classification processes are typical examples of these stages. To overcome these obstacles, we present a novel deep-learning model for the automated identification of Parkinson's disease (PD). The Gabor transform, a standard method in EEG signal processing, was used to turn the raw data from the EEG recordings into spectrograms. In this research, we propose densely linked bidirectional long short-term memory (DLBLSTM), which first represents each layer as the sum of its hidden state plus the hidden states of all layers above it, then recursively transmits that representation to all layers below it. This study's suggested deep learning model was trained using these spectrograms as input data. Using a robust sixfold cross-validation method, the proposed model showed excellent accuracy with a classification accuracy of 99.6%. The results indicate that the suggested algorithm can automatically identify PD.

3.
PeerJ Comput Sci ; 9: e1681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077613

RESUMO

Retinoblastoma, the most prevalent pediatric intraocular malignancy, can cause vision loss in children and adults worldwide. Adults may develop uveal melanoma. It is a hazardous tumor that can expand swiftly and destroy the eye and surrounding tissue. Thus, early retinoblastoma screening in children is essential. This work isolated retinal tumor cells, which is its main contribution. Tumors were also staged and subtyped. The methods let ophthalmologists discover and forecast retinoblastoma malignancy early. The approach may prevent blindness in infants and adults. Experts in ophthalmology now have more tools because of their disposal and the revolution in deep learning techniques. There are three stages to the suggested approach, and they are pre-processing, segmenting, and classification. The tumor is isolated and labeled on the base picture using various image processing techniques in this approach. Median filtering is initially used to smooth the pictures. The suggested method's unique selling point is the incorporation of fused features, which result from combining those produced using deep learning models (DL) such as EfficientNet and CNN with those obtained by more conventional handmade feature extraction methods. Feature selection (FS) is carried out to enhance the performance of the suggested system further. Here, we present BAOA-S and BAOA-V, two binary variations of the newly introduced Arithmetic Optimization Algorithm (AOA), to perform feature selection. The malignancy and the tumor cells are categorized once they have been segmented. The suggested optimization method enhances the algorithm's parameters, making it well-suited to multimodal pictures taken with varying illness configurations. The proposed system raises the methods' accuracy, sensitivity, and specificity to 100, 99, and 99 percent, respectively. The proposed method is the most effective option and a viable alternative to existing solutions in the market.

4.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894383

RESUMO

Internet of Things (IoT)-assisted skin cancer recognition integrates several connected devices and sensors for supporting the primary analysis and monitoring of skin conditions. A preliminary analysis of skin cancer images is extremely difficult because of factors such as distinct sizes and shapes of lesions, differences in color illumination, and light reflections on the skin surface. In recent times, IoT-based skin cancer recognition utilizing deep learning (DL) has been used for enhancing the early analysis and monitoring of skin cancer. This article presents an optimal deep learning-based skin cancer detection and classification (ODL-SCDC) methodology in the IoT environment. The goal of the ODL-SCDC technique is to exploit metaheuristic-based hyperparameter selection approaches with a DL model for skin cancer classification. The ODL-SCDC methodology involves an arithmetic optimization algorithm (AOA) with the EfficientNet model for feature extraction. For skin cancer detection, a stacked denoising autoencoder (SDAE) classification model has been used. Lastly, the dragonfly algorithm (DFA) is utilized for the optimal hyperparameter selection of the SDAE algorithm. The simulation validation of the ODL-SCDC methodology has been tested on a benchmark ISIC skin lesion database. The extensive outcomes reported a better solution of the ODL-SCDC methodology compared with other models, with a maximum sensitivity of 97.74%, specificity of 99.71%, and accuracy of 99.55%. The proposed model can assist medical professionals, specifically dermatologists and potentially other healthcare practitioners, in the skin cancer diagnosis process.

5.
Cancers (Basel) ; 15(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046806

RESUMO

Artificial Intelligence (AI) techniques have changed the general perceptions about medical diagnostics, especially after the introduction and development of Convolutional Neural Networks (CNN) and advanced Deep Learning (DL) and Machine Learning (ML) approaches. In general, dermatologists visually inspect the images and assess the morphological variables such as borders, colors, and shapes to diagnose the disease. In this background, AI techniques make use of algorithms and computer systems to mimic the cognitive functions of the human brain and assist clinicians and researchers. In recent years, AI has been applied extensively in the domain of dermatology, especially for the detection and classification of skin cancer and other general skin diseases. In this research article, the authors propose an Optimal Multi-Attention Fusion Convolutional Neural Network-based Skin Cancer Diagnosis (MAFCNN-SCD) technique for the detection of skin cancer in dermoscopic images. The primary aim of the proposed MAFCNN-SCD technique is to classify skin cancer on dermoscopic images. In the presented MAFCNN-SCD technique, the data pre-processing is performed at the initial stage. Next, the MAFNet method is applied as a feature extractor with Henry Gas Solubility Optimization (HGSO) algorithm as a hyperparameter optimizer. Finally, the Deep Belief Network (DBN) method is exploited for the detection and classification of skin cancer. A sequence of simulations was conducted to establish the superior performance of the proposed MAFCNN-SCD approach. The comprehensive comparative analysis outcomes confirmed the supreme performance of the proposed MAFCNN-SCD technique over other methodologies.

6.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765839

RESUMO

Histopathological images are commonly used imaging modalities for breast cancer. As manual analysis of histopathological images is difficult, automated tools utilizing artificial intelligence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL approaches will be helpful in establishing maximal image classification performance in numerous application zones. This study develops an arithmetic optimization algorithm with deep-learning-based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology, this comparative study states that the AOADL-HBCC technique displays better performance than other recent methodologies, with a maximum accuracy of 96.77%.

7.
Bioengineering (Basel) ; 10(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671659

RESUMO

Recently, artificial intelligence (AI) is an extremely revolutionized domain of medical image processing. Specifically, image segmentation is a task that generally aids in such an improvement. This boost performs great developments in the conversion of AI approaches in the research lab to real medical applications, particularly for computer-aided diagnosis (CAD) and image-guided operation. Mitotic nuclei estimates in breast cancer instances have a prognostic impact on diagnosis of cancer aggressiveness and grading methods. The automated analysis of mitotic nuclei is difficult due to its high similarity with nonmitotic nuclei and heteromorphic form. This study designs an artificial hummingbird algorithm with transfer-learning-based mitotic nuclei classification (AHBATL-MNC) on histopathologic breast cancer images. The goal of the AHBATL-MNC technique lies in the identification of mitotic and nonmitotic nuclei on histopathology images (HIs). For HI segmentation process, the PSPNet model is utilized to identify the candidate mitotic patches. Next, the residual network (ResNet) model is employed as feature extractor, and extreme gradient boosting (XGBoost) model is applied as a classifier. To enhance the classification performance, the parameter tuning of the XGBoost model takes place by making use of the AHBA approach. The simulation values of the AHBATL-MNC system are tested on medical imaging datasets and the outcomes are investigated in distinct measures. The simulation values demonstrate the enhanced outcomes of the AHBATL-MNC method compared to other current approaches.

8.
PLoS One ; 17(11): e0275781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355845

RESUMO

The effective segmentation of lesion(s) from dermoscopic skin images assists the Computer-Aided Diagnosis (CAD) systems in improving the diagnosing rate of skin cancer. The results of the existing skin lesion segmentation techniques are not up to the mark for dermoscopic images with artifacts like varying size corner borders with color similar to lesion(s) and/or hairs having low contrast with surrounding background. To improve the results of the existing skin lesion segmentation techniques for such kinds of dermoscopic images, an effective skin lesion segmentation method is proposed in this research work. The proposed method searches for the presence of corner borders in the given dermoscopc image and removes them if found otherwise it starts searching for the presence of hairs on it and eliminate them if present. Next, it enhances the resultant image using state-of-the-art image enhancement method and segments lesion from it using machine learning technique namely, GrabCut method. The proposed method was tested on PH2 and ISIC 2018 datasets containing 200 images each and its accuracy was measured with two evaluation metrics, i.e., Jaccard index, and Dice index. The evaluation results show that our proposed skin lesion segmentation method obtained Jaccard Index of 0.77, 0.80 and Dice index of 0.87, 0.82 values on PH2, and ISIC2018 datasets, respectively, which are better than state-of-the-art skin lesion segmentation techniques.


Assuntos
Remoção de Cabelo , Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Dermoscopia/métodos , Melanoma/patologia , Redes Neurais de Computação , Algoritmos , Neoplasias Cutâneas/patologia , Dermatopatias/diagnóstico por imagem , Aprendizado de Máquina
9.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366205

RESUMO

Wireless sensor networks (WSNs) have been developed recently to support several applications, including environmental monitoring, traffic control, smart battlefield, home automation, etc. WSNs include numerous sensors that can be dispersed around a specific node to achieve the computing process. In WSNs, routing becomes a very significant task that should be managed prudently. The main purpose of a routing algorithm is to send data between sensor nodes (SNs) and base stations (BS) to accomplish communication. A good routing protocol should be adaptive and scalable to the variations in network topologies. Therefore, a scalable protocol has to execute well when the workload increases or the network grows larger. Many complexities in routing involve security, energy consumption, scalability, connectivity, node deployment, and coverage. This article introduces a wavelet mutation with Aquila optimization-based routing (WMAO-EAR) protocol for wireless communication. The presented WMAO-EAR technique aims to accomplish an energy-aware routing process in WSNs. To do this, the WMAO-EAR technique initially derives the WMAO algorithm for the integration of wavelet mutation with the Aquila optimization (AO) algorithm. A fitness function is derived using distinct constraints, such as delay, energy, distance, and security. By setting a mutation probability P, every individual next to the exploitation and exploration phase process has the probability of mutation using the wavelet mutation process. For demonstrating the enhanced performance of the WMAO-EAR technique, a comprehensive simulation analysis is made. The experimental outcomes establish the betterment of the WMAO-EAR method over other recent approaches.

10.
Biomedicines ; 10(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359235

RESUMO

Recently, artificial intelligence (AI) including machine learning (ML) and deep learning (DL) models has been commonly employed for the automated disease diagnosis process. AI in biological and biomedical imaging is an emerging area and will be a future trend in the field. At the same time, biomedical images can be used for the classification of Rheumatoid arthritis (RA) diseases. RA is an autoimmune illness that affects the musculoskeletal system causing systemic, inflammatory and chronic effects. The disease frequently becomes progressive and decreases physical function, causing articular damage, suffering, and fatigue. After a time, RA causes harm to the cartilage of the joints and bones, weakens the tendons and joints, and finally causes joint destruction. Sensors (thermal infrared camera sensor, accelerometers and wearable sensors) are more commonly employed to collect data for RA. This study develops an Automated Rheumatoid Arthritis Classification using an Arithmetic Optimization Algorithm with Deep Learning (ARAC-AOADL) model. The goal of the presented ARAC-AOADL technique lies in the classification of health disorders depending upon RA and orthopaedics. Primarily, the presented ARAC-AOADL technique pre-processes the input images by median filtering (MF) technique. Then, the ARAC-AOADL technique uses AOA with an enhanced capsule network (ECN) model to produce feature vectors. For RA classification, the ARAC-AOADL technique uses a multi-kernel extreme learning machine (MKELM) model. The experimental result analysis of the ARAC-AOADL technique on a benchmark dataset reported a maximum accuracy of 98.57%. Therefore, the ARAC-AOADL technique can be employed for accurate and timely RA classification.

11.
Sci Rep ; 12(1): 15389, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100621

RESUMO

Accurate classification of brain tumor subtypes is important for prognosis and treatment. Researchers are developing tools based on static and dynamic feature extraction and applying machine learning and deep learning. However, static feature requires further analysis to compute the relevance, strength, and types of association. Recently Bayesian inference approach gains attraction for deeper analysis of static (hand-crafted) features to unfold hidden dynamics and relationships among features. We computed the gray level co-occurrence (GLCM) features from brain tumor meningioma and pituitary MRIs and then ranked based on entropy methods. The highly ranked Energy feature was chosen as our target variable for further empirical analysis of dynamic profiling and optimization to unfold the nonlinear intrinsic dynamics of GLCM features extracted from brain MRIs. The proposed method further unfolds the dynamics and to detailed analysis of computed features based on GLCM features for better understanding of the hidden dynamics for proper diagnosis and prognosis of tumor types leading to brain stroke.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Algoritmos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico por imagem , Meningioma/patologia
12.
Comput Intell Neurosci ; 2022: 1698137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607459

RESUMO

Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration, medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective solutions and decisions. The latest developments of fuzzy systems with artificial intelligence techniques enable to design the effective microarray gene expression classification models. In this aspect, this study introduces a novel feature subset selection with optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. The major aim of the FSS-OANFIS model is to detect and classify the gene expression data. To accomplish this, the FSS-OANFIS model designs an improved grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFIS model is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization algorithm (COA). The application of IGWO-FS and COA techniques helps in accomplishing enhanced microarray gene expression classification outcomes. The experimental validation of the FSS-OANFIS model has been performed using Leukemia, Prostate, DLBCL Stanford, and Colon Cancer datasets. The proposed FSS-OANFIS model has resulted in a maximum classification accuracy of 89.47%.


Assuntos
Inteligência Artificial , Lógica Fuzzy , Animais , Masculino , Algoritmos , Biologia Computacional , Expressão Gênica
13.
J Healthc Eng ; 2022: 3987494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368960

RESUMO

Brain Computer Interface (BCI) technology commonly used to enable communication for the person with movement disability. It allows the person to communicate and control assistive robots by the use of electroencephalogram (EEG) or other brain signals. Though several approaches have been available in the literature for learning EEG signal feature, the deep learning (DL) models need to further explore for generating novel representation of EEG features and accomplish enhanced outcomes for MI classification. With this motivation, this study designs an arithmetic optimization with RetinaNet based deep learning model for MI classification (AORNDL-MIC) technique on BCIs. The proposed AORNDL-MIC technique initially exploits Multiscale Principal Component Analysis (MSPCA) approach for the EEG signal denoising and Continuous Wavelet Transform (CWT) is exploited for the transformation of 1D-EEG signal into 2D time-frequency amplitude representation, which enables to utilize the DL model via transfer learning approach. In addition, the DL based RetinaNet is applied for extracting of feature vectors from the EEG signal which are then classified with the help of ID3 classifier. In order to optimize the classification efficiency of the AORNDL-MIC technique, arithmetical optimization algorithm (AOA) is employed for hyperparameter tuning of the RetinaNet. The experimental analysis of the AORNDL-MIC algorithm on the benchmark data sets reported its promising performance over the recent state of art methodologies.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Humanos , Imaginação , Processamento de Sinais Assistido por Computador
14.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270898

RESUMO

To address the problem of automatically detecting and removing the mask without user interaction, we present a GAN-based automatic approach for face de-occlusion, called Automatic Mask Generation Network for Face De-occlusion Using Stacked Generative Adversarial Networks (AFD-StackGAN). In this approach, we decompose the problem into two primary stages (i.e., Stage-I Network and Stage-II Network) and employ a separate GAN in both stages. Stage-I Network (Binary Mask Generation Network) automatically creates a binary mask for the masked region in the input images (occluded images). Then, Stage-II Network (Face De-occlusion Network) removes the mask object and synthesizes the damaged region with fine details while retaining the restored face's appearance and structural consistency. Furthermore, we create a paired synthetic face-occluded dataset using the publicly available CelebA face images to train the proposed model. AFD-StackGAN is evaluated using real-world test images gathered from the Internet. Our extensive experimental results confirm the robustness and efficiency of the proposed model in removing complex mask objects from facial images compared to the previous image manipulation approaches. Additionally, we provide ablation studies for performance comparison between the user-defined mask and auto-defined mask and demonstrate the benefits of refiner networks in the generation process.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Face/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...