Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(29): 19086-19098, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337247

RESUMO

This series of two papers is devoted to the effect of organic dye (methylene blue, MB; or methyl orange, MO) adsorption on the surface of either bare or citrate-coated magnetic iron oxide nanoparticles (IONPs) on their primary agglomeration (in the absence of an applied magnetic field) and secondary field-induced agglomeration. The present paper (Part I) is focused on physicochemical mechanisms of dye adsorption and adsorption-induced primary agglomeration of IONPs. Dye adsorption to oppositely charged IONPs is found to be mostly promoted by electrostatic interactions and is very sensitive to pH and ionic strength variations. The shape of adsorption isotherms is correctly reproduced by the Langmuir law. For the particular MB/citrated IONP pair, the maximum surface density of adsorbed MB seems to correspond to the packing density of an adsorbed monolayer rather than to the surface density of the available adsorption sites. MB is shown to form H-aggregates on the surface of citrate-coated IONPs. The effective electric charge on the IONP surface remains nearly constant in a broad range of surface coverages by MB due to the combined action of counterion exchange and counterion condensation. Primary agglomeration of IONPs (revealed by an exponential increase of hydrodynamic size with surface coverage by MB) probably comes from correlation attractions or π-stacking aromatic interactions between adsorbed MB molecules or H-aggregates. From the application perspective, the maximum adsorption capacity is 139 ± 4 mg/g for the MB/citrated IONP pair (pH = 4-11) and 257 ± 16 mg/g for the MO/bare IONP pair (pH ∼ 4). Citrated IONPs have shown a good potential for their reusability in water treatment, with the adsorption efficiency remaining about 99% after nine adsorption/desorption cycles.

2.
J Colloid Interface Sci ; 457: 218-24, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188728

RESUMO

The paper focuses on the removal of p-nitrophenol by an adsorption process. A magnetic adsorbent was synthesized by encapsulation of magnetic functionalized nanoparticles using alginate as a green biopolymer matrix. A cationic surfactant, cetylpyridinium chloride (CPyCl), was used to confer a hydrophobic character to the magnetic beads and thus to promote their adsorption efficiency. The effect of different parameters such as initial concentrations of both PNP and CPyCl, contact time and solution pH value on the adsorption of PNP in the presence of CPyCl was investigated. It should be noted that combination of magnetic and adsorption properties in a same material is an interesting challenge which could overcome the recovery problems of pollutant-loaded adsorbent.

3.
J Colloid Interface Sci ; 432: 182-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086393

RESUMO

Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

4.
J Colloid Interface Sci ; 410: 52-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23998368

RESUMO

In this study, magnetic beads were prepared by encapsulation of magnetic nanoparticles in epichlorohydrin cross-linked chitosan beads. Their adsorption characteristics were assessed by using methyl orange (MO) as an adsorbate. MO adsorption onto chitosan beads was found to be optimal in the pH range of 3-5. The adsorption isotherm was well described by the Langmuir model and showed high MO adsorption capacity (2.38 mmol/g, i.e. 779 mg/g). MO adsorption kinetics followed a pseudo-second-order kinetic model, indicating that adsorption was the rate-limiting step. At 0.305 mmol/L, only 19 min was required to reach 90% adsorption and 50% of the MO was adsorbed in 2 min. Desorption studies of MO using NaOH showed the reusability of the magsorbent. No release of iron species was observed at pH>2.4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...