Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(8): e202216464, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541599

RESUMO

The highly controlled and efficient polymerization of ethylene is a very attractive but challenging target. Herein we report on a Coordinative Chain Transfer Polymerization catalyst, which combines a high degree of control and very high activity in ethylene oligo- or polymerization with extremely high chain transfer agent (triethylaluminum) to catalyst ratios (catalyst economy). Our Zr catalyst is long living and temperature stable. The chain length of the polyethylene products increases over time under constant ethylene feed or until a certain volume of ethylene is completely consumed to reach the expected molecular weight. Very high activities are observed if the catalyst elongates 60 000 or more alkyl chains and the polydispersity of the strictly linear polyethylene materials obtained are very low. The key for the combination of high control and efficiency seems to be a catalyst stabilized by only one strongly bound monoanionic N-ligand.

2.
J Am Chem Soc ; 137(25): 7998-8001, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26080036

RESUMO

The substitution of high-price noble metals such as Ir, Ru, Rh, Pd, and Pt by earth-abundant, inexpensive metals like Co is an attractive goal in (homogeneous) catalysis. Only two examples of Co catalysts, showing efficient C═O bond hydrogenation rates, are described. Here, we report on a novel, easy-to-synthesize Co catalyst family. Catalyst activation takes place via addition of 2 equiv of a metal base to the cobalt dichlorido precatalysts. Aldehydes and ketones of different types (dialkyl, aryl-alkyl, diaryl) are hydrogenated quantitatively under mild conditions partially with catalyst loadings as low as 0.25 mol%. A comparison of the most active Co catalyst with an Ir catalyst stabilized by the same ligand indicates the superiority of Co. Unique selectivity toward C═O bonds in the presence of C═C bonds has been observed. This selectivity is opposite to that of existing Co catalysts and surprising because of the directing influence of a hydroxyl group in C═C bond hydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...