Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 131: 69-79, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28943069

RESUMO

Coastal ecosystems are subjected to global and local environmental stressors, including increased atmospheric carbon dioxide (CO2) (and subsequent ocean acidification) and nutrient loading. Here, we tested how two common macroalgal species in the Northwest Atlantic (Ulva spp. and Fucus vesiculosus Linneaus) respond to the combination of increased CO2 and nutrient loading. We utilized two levels of pCO2 with two levels of nutrients in a full factorial design, testing the growth rates and tissue quality of Ulva and Fucus grown for 21 days in monoculture and biculture. We found that the opportunistic, fast-growing Ulva exhibited increased growth rates under high pCO2 and high nutrients, with growth rates increasing three-fold above Ulva grown in ambient pCO2 and ambient nutrients. By contrast, Fucus growth rates were not impacted by either environmental factor. Both species exhibited a decline in carbon to nitrogen ratios (C:N) with elevated nutrients, but pCO2 concentration did not alter tissue quality in either species. Species grown in biculture exhibited similar growth rates to those in monoculture conditions, but Fucus C:N increased significantly when grown with Ulva, indicating an effect of the presence of Ulva on Fucus. Our results suggest that the combination of ocean acidification and nutrients will enhance abundance of opportunistic algal species in coastal systems and will likely drive macroalgal community shifts, based on species-specific responses to future conditions.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental , Alga Marinha/fisiologia , Ecossistema , Fucus , Nitrogênio/análise , Fósforo/análise , Água do Mar , Ulva
2.
J Therm Biol ; 64: 26-34, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28166942

RESUMO

Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4°C between their CTmax and the 100-year projection for mean summer water temperatures of 28°C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.


Assuntos
Aclimatação , Temperatura Corporal , Crustáceos/fisiologia , Aquecimento Global , Natação , Animais , Temperatura Alta , Oceanos e Mares , Especificidade da Espécie
3.
PLoS Genet ; 11(1): e1004852, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25621974

RESUMO

Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.


Assuntos
Transtorno Autístico/genética , Contactinas/genética , Estudos de Associação Genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transtorno Autístico/patologia , Códon sem Sentido , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Humanos , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Deleção de Sequência
4.
Nature ; 485(7397): 237-41, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22495306

RESUMO

Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.


Assuntos
Transtorno Autístico/genética , Exoma/genética , Éxons/genética , Predisposição Genética para Doença/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Alelos , Códon sem Sentido/genética , Heterogeneidade Genética , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2 , Sítios de Splice de RNA/genética , Irmãos
5.
Neuron ; 70(5): 863-85, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21658581

RESUMO

We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 7/genética , Variações do Número de Cópias de DNA/genética , Saúde da Família , Síndrome de Williams/genética , Adolescente , Caderinas/genética , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular Neuronais/genética , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Feminino , Duplicação Gênica/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas/genética , Irmãos , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...