Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Res ; 84(6): 793-795, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486481

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the deadliest subtype of ovarian cancer. While PARP inhibitors (PARPi) have transformed the care of advanced HGSOC, PARPi resistance poses a major limitation to their clinical utility. DNA damage checkpoint signaling via ATR kinase can counteract PARPi-induced replication stress, making ATR an attractive therapeutic target in PARPi-resistant tumors. However, ATR inhibitor (ATRi) efficacy in the clinic is low, emphasizing the need for suitable combination treatments. In this issue of Cancer Research, Huang and colleagues uncovered cytotoxic synergism between inhibition of the PI3K/AKT pathway and ATR based on high-throughput screening for ATRi drug combinations in PARPi-resistant HGSOC cells. Dual inhibition of ATR and AKT resulted in aberrant replication stress and cell death, which was attributed in part to impaired resolution of replication-stalling RNA:DNA hybrids (R loops). The authors identified the DNA/RNA helicase DHX9 as a clinically relevant candidate effector of R loop resolution in HGSOC. AKT interacted with and recruited DHX9 to R loops, where it complemented ATR in facilitating their removal. Underlining the therapeutic potential relevance of these findings, combined inhibition of ATR and AKT caused near complete tumor regression in HGSOC xenograft models, and elevated AKT/DHX9 levels correlated with poor survival in patients with HGSOC. Of note, the genotoxic consequences of dual ATRi/AKTi treatment extended beyond PARPi-resistant tumors and are likely to affect genome integrity beyond R loops. The work by Huang and colleagues thus provides compelling rationale for the exploration of combined targeting of the AKT and ATR pathways as a potentially broadly applicable treatment of advanced HGSOC. See related article by Huang et al., p. 887.


Assuntos
Neoplasias Ovarianas , Estruturas R-Loop , Humanos , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , DNA
3.
Chromosoma ; 133(1): 1-3, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355990
4.
Cancer Res ; 83(16): 2750-2762, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37306706

RESUMO

ARID1A is a subunit of SWI/SNF chromatin remodeling complexes and is mutated in many types of human cancers, especially those derived from endometrial epithelium, including ovarian and uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). Loss-of-function mutations in ARID1A alter epigenetic regulation of transcription, cell-cycle checkpoint control, and DNA damage repair. We report here that mammalian cells with ARID1A deficiency harbor accumulated DNA base lesions and increased abasic (AP) sites, products of glycosylase in the first step of base excision repair (BER). ARID1A mutations also delayed recruitment kinetics of BER long-patch repair effectors. Although ARID1A-deficient tumors were not sensitive to monotherapy with DNA-methylating temozolomide (TMZ), the combination of TMZ with PARP inhibitors (PARPi) potently elicited double-strand DNA breaks, replication stress, and replication fork instability in ARID1A-deficient cells. The TMZ and PARPi combination also significantly delayed in vivo growth of ovarian tumor xenografts carrying ARID1A mutations and induced apoptosis and replication stress in xenograft tumors. Together, these findings identified a synthetic lethal strategy to enhance the response of ARID1A-mutated cancers to PARP inhibition, which warrants further experimental exploration and clinical trial validation. SIGNIFICANCE: The combination of temozolomide and PARP inhibitor exploits the specific DNA damage repair status of ARID1A-inactivated ovarian cancers to suppress tumor growth.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Animais , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Epigênese Genética , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Mamíferos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
5.
Semin Cell Dev Biol ; 135: 59-72, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35331626

RESUMO

Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.


Assuntos
Cromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Genoma , Processamento de Proteína Pós-Traducional/genética , DNA/genética
6.
Front Genet ; 12: 746380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745220

RESUMO

Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.

7.
Nat Rev Genet ; 21(11): 651-670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32764716

RESUMO

All organisms must safeguard the integrity of their DNA to avoid deleterious consequences of genome instability, which have been linked to human diseases such as autoimmune disorders, neurodegenerative diseases and cancer. Traditionally, genome maintenance has been viewed largely in terms of DNA-protein interactions. However, emerging evidence points to RNA as a key modulator of genome stability, with seemingly opposing roles in promoting chromosomal instability and protecting genome integrity. Unravelling the mechanistic and contextual basis of this duality will not only improve our understanding of the interfaces between RNA and the genome but will also provide important insights into how disrupted RNA metabolism contributes to disease origin, laying the foundation for targeted intervention.


Assuntos
Genoma Humano , Instabilidade Genômica , RNA/fisiologia , Adenosina/metabolismo , Animais , Reparo do DNA , Células Eucarióticas , Humanos , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , Retroelementos , Transcrição Gênica
8.
Mol Cell ; 79(5): 836-845.e7, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649884

RESUMO

The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.


Assuntos
Processamento Alternativo , Reparo do DNA , Epigênese Genética , Instabilidade Genômica , Histonas/fisiologia , Anáfase , Animais , Linhagem Celular , Instabilidade Cromossômica , Cromossomos Humanos X , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Cell ; 181(2): 236-249, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Atlas como Assunto , Transformação Celular Neoplásica/patologia , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Análise de Célula Única/métodos
10.
Nat Struct Mol Biol ; 26(3): 213-219, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833786

RESUMO

The growth of telomerase-deficient cancers depends on the alternative lengthening of telomeres (ALT), a homology-directed telomere-maintenance pathway. ALT telomeres exhibit a unique chromatin environment and generally lack the nucleosome remodeler ATRX, pointing to an epigenetic basis for ALT. Recently, we identified a protective role for the ATRX-interacting macroH2A1.2 histone variant during homologous recombination and replication stress (RS). Consistent with an inherent susceptibility to RS, we show that human ALT telomeres are highly enriched for macroH2A1.2. However, in contrast to ATRX-proficient cells, ALT telomeres transiently lose macroH2A1.2 during acute RS to facilitate DNA double-strand break (DSB) formation, a process that is almost completely prevented by ectopic ATRX expression. Telomeric macroH2A1.2 is re-deposited in a DNA damage response (DDR)-dependent manner to promote homologous recombination-associated ALT pathways. Our findings thus identify the dynamic exchange of macroH2A1.2 on chromatin as an epigenetic link among ATRX loss, RS-induced DDR initiation and telomere maintenance via homologous recombination.


Assuntos
Cromatina/metabolismo , Reparo do DNA/genética , Histonas/genética , Recombinação Homóloga/genética , Homeostase do Telômero/genética , Proteína Nuclear Ligada ao X/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Células HEK293 , Células HeLa , Humanos , Telomerase/metabolismo
11.
Mol Cell Oncol ; 5(3): e1441629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250894

RESUMO

The macroH2A1.2 histone variant facilitates the response to replication stress with implications for genome maintenance and cell growth. A mutually exclusive splice variant, macroH2A1.1, has opposing effects on DNA repair outcome and proliferation. Here we discuss the potential impact of splicing-modulated macroH2A1 chromatin organization for cell function and malignant transformation.

12.
Cell Stem Cell ; 23(3): 355-369.e9, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146412

RESUMO

Myelodysplastic syndrome (MDS), a largely incurable hematological malignancy, is derived from aberrant clonal hematopoietic stem/progenitor cells (HSPCs) that persist after conventional therapies. Defining the mechanisms underlying MDS HSPC maintenance is critical for developing MDS therapy. The deacetylase SIRT1 regulates stem cell proliferation, survival, and self-renewal by deacetylating downstream proteins. Here we show that SIRT1 protein levels were downregulated in MDS HSPCs. Genetic or pharmacological activation of SIRT1 inhibited MDS HSPC functions, whereas SIRT1 deficiency enhanced MDS HSPC self-renewal. Mechanistically, the inhibitory effects of SIRT1 were dependent on TET2, a safeguard against HSPC transformation. SIRT1 deacetylated TET2 at conserved lysine residues in its catalytic domain, enhancing TET2 activity. Our genome-wide analysis identified cancer-related genes regulated by the SIRT1/TET2 axis. SIRT1 activation also inhibited functions of MDS HSPCs from patients with TET2 heterozygous mutations. Altogether, our results indicate that restoring TET2 function through SIRT1 activation represents a promising means to target MDS HSPCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sirtuína 1/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Células Tumorais Cultivadas
13.
Mol Cell ; 69(1): 36-47.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249653

RESUMO

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.


Assuntos
Carcinogênese/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Histonas/genética , Recombinação Homóloga/genética , Proteína BRCA1/metabolismo , Divisão Celular/genética , Células Cultivadas , Senescência Celular/genética , Instabilidade Genômica/fisiologia , Humanos , Transdução de Sinais/genética
14.
Philos Trans R Soc Lond B Biol Sci ; 372(1731)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28847825

RESUMO

Accurate maintenance of genomic as well as epigenomic integrity is critical for proper cell and organ function. Continuous exposure to DNA damage is, thus, often associated with malignant transformation and degenerative diseases. A significant, chronic threat to genome integrity lies in the process of transcription, which can result in the formation of potentially harmful RNA : DNA hybrid structures (R-loops) and has been linked to DNA damage accumulation as well as dynamic chromatin reorganization. In sharp contrast, recent evidence suggests that active transcription, the resulting transcripts as well as R-loop formation can play multi-faceted roles in maintaining and restoring genome integrity. Here, we will discuss the emerging contributions of transcription as both a source of DNA damage and a mediator of DNA repair. We propose that both aspects have significant implications for genome maintenance, and will speculate on possible long-term consequences for the epigenetic integrity of transcribing cells.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.


Assuntos
Dano ao DNA , Reparo do DNA , Epigênese Genética , Genoma , Transcrição Gênica
15.
Nat Commun ; 8(1): 137, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28743957

RESUMO

Tumor growth relies on efficient DNA repair to mitigate the detrimental impact of DNA damage associated with excessive cell division. Modulating repair factor function, thus, provides a promising strategy to manipulate malignant growth. Here, we identify the ubiquitin-specific protease USP21 as a positive regulator of BRCA2, a key mediator of DNA repair by homologous recombination. USP21 interacts with, deubiquitinates and stabilizes BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks. As a result, depletion of USP21 decreases homologous recombination efficiency, causes an increase in DNA damage load and impairs tumor cell survival. Importantly, BRCA2 overexpression partially restores the USP21-associated survival defect. Moreover, we show that USP21 is overexpressed in hepatocellular carcinoma, where it promotes BRCA2 stability and inversely correlates with patient survival. Together, our findings identify deubiquitination as a means to regulate BRCA2 function and point to USP21 as a potential therapeutic target in BRCA2-proficient tumors.BRCA2 is essential for the repair of DNA damage; therefore, defects in BRCA2 are associated with tumorigenesis but also with increased susceptibility to genotoxic stress. Here the authors show that USP21 regulates the ability of tumor cells to repair damaged DNA by regulating BRCA2 stability.


Assuntos
Proteína BRCA2/genética , Reparo do DNA , Neoplasias/genética , Ubiquitina Tiolesterase/genética , Animais , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Nus , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Transplante Heterólogo , Carga Tumoral/genética , Ubiquitina Tiolesterase/metabolismo
16.
Nucleic Acids Res ; 44(7): e64, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26687720

RESUMO

DNA double-strand breaks (DSBs) and their repair can cause extensive epigenetic changes. As a result, DSBs have been proposed to promote transcriptional and, ultimately, physiological dysfunction via both cell-intrinsic and cell-non-autonomous pathways. Studying the consequences of DSBs in higher organisms has, however, been hindered by a scarcity of tools for controlled DSB induction. Here, we describe a mouse model that allows for both tissue-specific and temporally controlled DSB formation at ∼140 defined genomic loci. Using this model, we show that DSBs promote a DNA damage signaling-dependent decrease in gene expression in primary cells specifically at break-bearing genes, which is reversed upon DSB repair. Importantly, we demonstrate that restoration of gene expression can occur independently of cell cycle progression, underlining its relevance for normal tissue maintenance. Consistent with this, we observe no evidence for persistent transcriptional repression in response to a multi-day course of continuous DSB formation and repair in mouse lymphocytes in vivo Together, our findings reveal an unexpected capacity of primary cells to maintain transcriptome integrity in response to DSBs, pointing to a limited role for DNA damage as a mediator of cell-autonomous epigenetic dysfunction.


Assuntos
Quebras de DNA de Cadeia Dupla , Transcriptoma , Animais , Células Cultivadas , Endodesoxirribonucleases , Loci Gênicos , Camundongos , Camundongos Transgênicos , Transdução de Sinais
17.
Genes (Basel) ; 6(3): 858-77, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378584

RESUMO

DNA replication is essential for cell division. Challenges to the progression of DNA polymerase can result in replication stress, promoting the stalling and ultimately collapse of replication forks. The latter involves the formation of DNA double-strand breaks (DSBs) and has been linked to both genome instability and irreversible cell cycle arrest (senescence). Recent technological advances have elucidated many of the factors that contribute to the sensing and repair of stalled or broken replication forks. In addition to bona fide repair factors, these efforts highlight a range of chromatin-associated changes at and near sites of replication stress, suggesting defects in epigenome maintenance as a potential outcome of aberrant DNA replication. Here, we will summarize recent insight into replication stress-induced chromatin-reorganization and will speculate on possible adverse effects for gene expression, nuclear integrity and, ultimately, cell function.

18.
EMBO Rep ; 16(11): 1520-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26412854

RESUMO

Long non-coding RNAs (lncRNAs) are important players in diverse biological processes. Upon DNA damage, cells activate a complex signaling cascade referred to as the DNA damage response (DDR). Using a microarray screen, we identify here a novel lncRNA, DDSR1 (DNA damage-sensitive RNA1), which is induced upon DNA damage. DDSR1 induction is triggered in an ATM-NF-κB pathway-dependent manner by several DNA double-strand break (DSB) agents. Loss of DDSR1 impairs cell proliferation and DDR signaling and reduces DNA repair capacity by homologous recombination (HR). The HR defect in the absence of DDSR1 is marked by aberrant accumulation of BRCA1 and RAP80 at DSB sites. In line with a role in regulating HR, DDSR1 interacts with BRCA1 and hnRNPUL1, an RNA-binding protein involved in DNA end resection. Our results suggest a role for the lncRNA DDSR1 in modulating DNA repair by HR.


Assuntos
Proteína BRCA1/metabolismo , Dano ao DNA , Recombinação Homóloga , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica , Genes BRCA1 , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Análise em Microsséries , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/isolamento & purificação , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
Mol Cell Oncol ; 2(1): e970952, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27308388

RESUMO

DNA damage is widely recognized for its potential to impair epigenetic integrity. Epigenetic defects are closely associated with a variety of diseases. We have recently uncovered DNA double-strand break-induced chromatin condensation as a critical modulator of repair outcome. Here, we discuss the possible implications for cell functions beyond repair.

20.
Cell Rep ; 8(4): 1049-62, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25131201

RESUMO

Appropriate DNA double-strand break (DSB) repair factor choice is essential for ensuring accurate repair outcome and genomic integrity. The factors that regulate this process remain poorly understood. Here, we identify two repressive chromatin components, the macrohistone variant macroH2A1 and the H3K9 methyltransferase and tumor suppressor PRDM2, which together direct the choice between the antagonistic DSB repair mediators BRCA1 and 53BP1. The macroH2A1/PRDM2 module mediates an unexpected shift from accessible to condensed chromatin that requires the ataxia telangiectasia mutated (ATM)-dependent accumulation of both proteins at DSBs in order to promote DSB-flanking H3K9 dimethylation. Remarkably, loss of macroH2A1 or PRDM2, as well as experimentally induced chromatin decondensation, impairs the retention of BRCA1, but not 53BP1, at DSBs. As a result, macroH2A1 and/or PRDM2 depletion causes epistatic defects in DSB end resection, homology-directed repair, and the resistance to poly(ADP-ribose) polymerase (PARP) inhibition-all hallmarks of BRCA1-deficient tumors. Together, these findings identify dynamic, DSB-associated chromatin reorganization as a critical modulator of BRCA1-dependent genome maintenance.


Assuntos
Proteína BRCA1/fisiologia , Histonas/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Reparo de DNA por Recombinação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...