Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 99(6): 1043-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22645096

RESUMO

PREMISE OF THE STUDY: Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. METHODS: The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. KEY RESULTS: Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. CONCLUSIONS: Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.


Assuntos
Asteraceae/genética , Evolução Molecular , Hibridização Genética , Poliploidia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/classificação , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genoma de Planta/genética , Geografia , Hibridização in Situ Fluorescente , Cariótipo , México , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Texas
2.
Mol Phylogenet Evol ; 54(2): 594-606, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19825420

RESUMO

Pleistocene climatic fluctuations played a principal role for range formation and population history of many biota, including regions not directly affected by glaciations, such as the arid habitats of the southwestern United States and adjacent Mexico. Specifically, drought-adapted species are expected to have persisted during cooler and wetter periods in one or more refugia, resulting in lineage differentiation, from where they reached their current distribution after range expansion in the course of Holocene aridification. Here, we test this hypothesis using Melampodium cinereum (Asteraceae), a morphologically and cytologically variable species of dry brushlands of Texas and adjacent Mexico. In line with the hypothesized presence of several refugia, AFLP data provide strong evidence for the presence of geographically distinct genetic lineages, which, however, only partly agree with current intraspecific taxonomy. Despite multiple origins, tetraploids form a genetically cohesive group. The exclusive occurrence of tetraploids in a range parapatric to that of the diploids likely results from former geographic isolation of cytotypes, lending further support for the presence of Pleistocene refugia. Whereas plastid sequence data show a clear signal for the expected Holocene range and population expansion, they show little geographic structure and high levels of intrapopulational diversity. This may be due to lineage sorting during periods of population separation and/or substantial gene flow among populations via seeds, which has not been sufficient to erode the overall pattern of genetic divergence resulting from geographic isolation.


Assuntos
Asteraceae/genética , Genética Populacional , Filogenia , Poliploidia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/classificação , Teorema de Bayes , Clima , DNA de Cloroplastos/genética , DNA de Plantas/genética , Evolução Molecular , Variação Genética , Geografia , Haplótipos , México , Análise de Sequência de DNA , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA