Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 199: 17-20, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25661838

RESUMO

Pseudomonas putida N, a poly-3-hydroxyalkonate (PHA)-producing bacterium, showing ampicillin resistance, is an unusual strain. In the presence of this antibiotic, it grows as giant cells (25-50µm) forming complex networks inter-connected by micro-tubular structures. The transformation of this bacterium with a plasmid containing the gene phaF, which encodes a phasin involved in the molecular architecture of the PHA-granules, (i) restores the wild-type phenotype by reducing both bacterial size and length (coco-bacilli ranging between 0.5 and 3µm), and (ii) increases ampicillin resistance by more than 100-fold.


Assuntos
Proteínas de Bactérias/metabolismo , Lectinas de Plantas/metabolismo , Pseudomonas putida/citologia , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Lectinas de Plantas/genética , Poliésteres/metabolismo
2.
Environ Microbiol ; 17(9): 3182-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25627209

RESUMO

The poly-3-hydroxylkanoate (PHA)-overproducing mutant Pseudomonas putida U ΔfadBA (PpΔfadBA) lacks the genes encoding the main ß-oxidation pathway (FadBA). This strain accumulates enormous amounts of bioplastics when cultured in chemically defined media containing PHA precursors (different n-alkanoic or n-aryl-alkanoic acids) and an additional carbon source. In medium containing glucose or 4-hydroxy-phenylacetate, the mutant does not accumulate PHAs and grows just as the wild type (P. putida U). However, when the carbon source is octanoate, growth is severely impaired, suggesting that in PpΔfadBA, the metabolic imbalance resulting from a lower rate of ß-oxidation, together with the accumulation of bioplastics, causes severe physiological stress. Here, we show that PpΔfadBA efficiently counteracts this latter effect via a survival mechanism involving the introduction of spontaneous mutations that block PHA accumulation. Surprisingly, genetic analyses of the whole pha cluster revealed that these mutations occurred only in the gene encoding one of the polymerases (phaC1) and that the loss of PhaC1 function was enough to prevent PHA synthesis. The influence of these mutations on the structure of PhaC1 and the existence of a protein-protein (PhaC1-PhaC2) interaction that explains the functionality of the polymerization system are discussed herein.


Assuntos
Aciltransferases/genética , Plásticos Biodegradáveis/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Caprilatos/metabolismo , Glucose/metabolismo , Fenilacetatos/metabolismo , Pseudomonas putida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...