Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(4): 2040-2050, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128136

RESUMO

Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt-based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.

2.
PLoS One ; 13(9): e0202421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183733

RESUMO

Mexican sunflower, Tithonia diversifolia (Asteraceae), is an invasive tropical plant species native to Central America. It has spread in more than 70 countries across Asia, Africa and Australia. In Africa, this species is known to disturb native crops and plant communities, but its negative impacts remain underestimated. Moreover, its potential invasion risk has not been investigated so far. A fundamental aspect in the identification and prediction of habitats susceptible to biological invasions lies in the ability of an organism to conserve or change its ecological niche as part of the invasion process. Here, we compared the realised climatic niche of T. diversifolia between its Central American and African ranges. In addition, reciprocal distribution models were calibrated on its native and invaded ranges. Models were combined and projected to current and future climatic conditions in Africa to estimate the potential distribution of this species. Niche overlap given by Schoner's D index was low (0.23), equivalency and similarity tests suggested that the climatic niche of T. diversifolia is not similar in both ranges. However the low expansion (U = 0.09) and very high stability (S = 0.92) indices support climatic niche conservatism for this species in Africa, although it has not filled its entire niche so far. Our combined reciprocal models highlight highly suitable areas for this species in humid regions throughout East, Central and West Africa, then in some parts of South Africa and Madagascar. Future projections indicated that the distribution of climatically suitable habitats will likely remain stable.


Assuntos
Asteraceae/fisiologia , Clima , Dispersão Vegetal , África , América Central , Espécies Introduzidas , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...