Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(6): 061101, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018652

RESUMO

We show that gravitational waves cause freely falling gyroscopes to precess relative to fixed distant stars, extending the stationary Lense-Thirring effect. The precession rate decays as the square of the inverse distance to the source and is proportional to a suitable Noether current for dual asymptotic symmetries at null infinity. Integrating the rate over time yields a net rotation-a "gyroscopic memory"-whose angle reproduces the known spin memory effect but also contains an extra contribution due to the generator of gravitational electric-magnetic duality. The angle's order of magnitude for the first Laser Interferometer Gravitational Wave Observatory signal is estimated to be Φ∼10^{-35} arc sec near Earth, but the effect may be substantially larger for supermassive black hole mergers.

2.
Chaos ; 30(11): 113114, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261342

RESUMO

We consider the KdV equation on a circle and its Lie-Poisson reconstruction, which is reminiscent of an equation of motion for fluid particles. For periodic waves, the stroboscopic reconstructed motion is governed by an iterated map whose Poincaré rotation number yields the drift velocity. We show that this number has a geometric origin: it is the sum of a dynamical phase, a Berry phase, and an "anomalous phase." The last two quantities are universal: they are solely due to the underlying Virasoro group structure. The Berry phase, in particular, was previously described by Oblak [J. High Energy Phys. 10, 114 (2017)] for two-dimensional conformal field theories and follows from adiabatic deformations produced by the propagating wave. We illustrate these general results with cnoidal waves, for which all phases can be evaluated in closed form thanks to a uniformizing map that we derive. Along the way, we encounter "orbital bifurcations" occurring when a wave becomes non-uniformizable: there exists a resonance wedge, in the cnoidal parameter space, where particle motion is locked to the wave, while no such locking occurs outside of the wedge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...