Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(3): 2293-2305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37898105

RESUMO

BACKGROUND: The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factor k B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE: In this study, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS: The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm 2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm 2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet. k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation: k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , where M Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ and M Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined as k B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , where D det B ⃗ $D_\mathrm{det}^{\vec{B}}$ and D det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water ( D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS: The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determined k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulated k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact on D W $D_{W}$ was smaller 0.2 %. CONCLUSION: For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement of k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculating k B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Método de Monte Carlo , Água , Campos Magnéticos
2.
J Appl Clin Med Phys ; 21(8): 278-288, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32441884

RESUMO

PURPOSE: The PTW microDiamond has an enhanced spatial resolution when operated in an edge-on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS-483 code of practice for small field dosimetry. In this work the suitability of an edge-on orientation and advantages over the recommended face-on orientation will be presented. METHODS: The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge-on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. RESULTS: The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge-on orientation overresponds in the build-up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge-on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge-on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. CONCLUSIONS: The microDiamond was shown to be suitable for small field dosimetry when operated in edge-on orientation. When edge-on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Imagens de Fantasmas , Fótons , Água
3.
Med Phys ; 46(9): 4224-4232, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31246282

RESUMO

PURPOSE: Magnetic field effects on dose distribution and detector functionality must be well understood. The detector utilized to investigate these magnetic field effects was the DUO silicon array detector; the performance of this high spatial resolution detector was assessed under these conditions. The results were compared to Gafchromic EBT3 film to highlight any intrinsic magnetic field effects in the silicon. The results were also compared to previously published MagicPlate-512 (M512) data. The DUO has an improved spatial resolution (200 µm) over the M512 (2 mm). METHODS: A permanent magnet named Magnetic Apparatus for RaDiation Oncology Studies (MARDOS) paired with a standard linear accelerator (linac) enables either transverse (1.2 T) or inline (0.95 T) orientations of the magnetic field with respect to the radiation beam. A 6 MV Varian 2100C Linac provided the radiation component for the measurements. The DUO detector has 505 sensitive volumes (each volume measuring 800 × 40 × 100 µm3 ) organized in two orthogonal, linear arrays. The DUO was embedded in a solid water phantom in the first set-up and then a solid lung phantom in the second set-up and placed between the magnet cones. Beam profiles were compared under the magnetic field conditions and 0 T. Small field sizes from 0.8 × 0.8 cm2 up to 2.3 × 2.3 cm2 were investigated. The size of the air gap above the sensitive volumes of the DUO was investigated in the transverse orientation to assess the anticipated magnetic field effects. Full width at half maximum (FWHM), 80-20% penumbral widths and maximum dose differences between detectors and between the presence/absence of a magnetic field were investigated. Symmetry was also assessed for investigation of profile skewness under the transverse field. RESULTS: The penumbral widths measured by the DUO detector demonstrated good agreement with film and the M512 to within an average of 0.5 mm (within uncertainty: ±1 mm). The static inline magnetic field had minimal effect on the profiles in solid water. As expected, the lower density of solid lung meant that this material was more susceptible to demonstrating magnetic field effects in the dose deposited. The greatest penumbral narrowing due to the inline field (0.7 mm) occurred in lung. Central axis dose increase was greatest in lung (maximum: 9%). The transverse field widened penumbra, most notably in the solid lung phantom, by a maximum of 2.3 mm. The largest asymmetry due to the transverse field (4.6%) was also in solid lung. When the air gap above the DUO was filled with bolus, the dose maximum measured by the DUO was within 1.4% of film. CONCLUSIONS: The DUO detector has been shown to be successful in accurately describing the dose changes for small field sizes to within a 200-µm resolution in an environment resembling that of an MRI-linac. The DUO measurements were in agreement with both film and the M512 measurements, and therefore the DUO was found to be an appropriate alternative to the M512, with improvement in terms of its higher spatial resolution. MARDOS provided a suitable environment for these preliminary tests before progressing to the MRI-linac.


Assuntos
Campos Magnéticos , Radiometria/instrumentação , Silício , Calibragem , Estudos de Viabilidade , Aceleradores de Partículas , Controle de Qualidade
4.
Phys Med Biol ; 63(7): 075008, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29578113

RESUMO

Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.


Assuntos
Análise de Elementos Finitos , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Proteção Radiológica/instrumentação , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...