Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236100

RESUMO

This study aimed to obtain functional viscose textiles based on chitosan coatings with improved antibacterial properties and washing durability. For that reason, before functionalization with chitosan/zinc nanoparticles (NCH+Zn), the viscose fabric was modified by nonthermal gas plasma of dielectric barrier discharge (DBD) to introduce into its structure functional groups suitable for attachment of NCH+Zn. NCH+Zn were characterized by measurements of hydrodynamic diameter and zeta potential and AFM. DBD-plasma-modified and NCH+Zn-functionalized fabrics were characterized by zeta potential measurements, ATR-FTIR spectroscopy, the calcium acetate method (determination of content of carboxyl and aldehyde groups), SEM, breaking-strength measurements, elemental analysis, and ICP-OES. Their antibacterial activity was determined under dynamic contact conditions. In addition to SEM, the NCH+Zn distributions on viscose fabrics were also indirectly characterized by measuring their absorbent capacities before and after functionalization with NCH+Zn. Washing durability was monitored through changes in the zeta potential, chitosan and zinc content, and antibacterial activity after 1, 3, and 5 washing cycles. The obtained results showed that DBD plasma modification contributed to the simultaneous improvement of NCH+Zn sorption and antibacterial properties of the viscose fabric functionalized with NCH+Zn, and its washing durability, making it suitable for the production of high-value-added medical textiles.

2.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202327

RESUMO

The surface of cellulose films, obtained from micro nanofibrillated cellulose produced with different enzymatic pretreatment digestion times of refined pulp, was exposed to gas plasma, resulting in a range of surface chemical and morphological changes affecting the mechanical and surface interactional properties. The action of separate and dual exposure to oxygen and nitrogen cold dielectric barrier discharge plasma was studied with respect to the generation of roughness (confocal laser and atomic force microscopy), nanostructural and chemical changes on the cellulose film surface, and their combined effect on wettability. Elemental analysis showed that with longer enzymatic pretreatment time the wetting response was sensitive to the chemical and morphological changes induced by both plasma gases, but distinctly oxygen plasma was seen to induce much greater morphological change while nitrogen plasma contributed more to chemical modification of the film surface. In this novel study, it is shown that exposure to oxygen plasma, subsequently followed by exposure to nitrogen plasma, leads first to an increase in wetting, and second to more hydrophobic behaviour, thus improving, for example, suitability for printing using polar functional inks or providing film barrier properties, respectively.

3.
Carbohydr Polym ; 236: 116000, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172834

RESUMO

Hemp fibers with different amount of hemicelluloses and lignin were subjected to atmospheric pressure dielectric barrier discharge under different conditions (40 W and 80 W power of discharge, const. time 120 s) in order to study influence of plasma treatment on their structure and sorption properties. Wettability of plasma treated samples, compared with precursors, increased due to the changes in hemp fiber surface chemistry confirmed by ATR FTIR spectroscopy and increased roughness as a consequence of intensive surface etching, observed by SEM. After plasma treatment, wettability was the highest for hemp fibers with lower content of hemicelluloses (increase up to 9 times), while wettability of raw hemp fibers and fibers with lower content of lignin increased about 5 and 2 times, respectively. This investigation shows that plasma can be successfully used for improvement of raw hemp fibers wettability, even to substitute the chemical treatment for some applications of hemp.


Assuntos
Cannabis/química , Lignina/química , Gases em Plasma/química , Polissacarídeos/química , Molhabilidade
4.
J Hazard Mater ; 260: 1092-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23892174

RESUMO

Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC-DAD) and UHPLC-Orbitrap-MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes.


Assuntos
Cicloexanonas/análise , Herbicidas/análise , Cetonas/química , Mesilatos/análise , Oxigênio/química , Purificação da Água/métodos , Animais , Artemia , Benzeno/química , Carbono/química , Catálise , Cromatografia Líquida de Alta Pressão , Cicloexanonas/química , Relação Dose-Resposta a Droga , Ecossistema , Herbicidas/química , Peróxido de Hidrogênio/química , Ferro/química , Espectrometria de Massas , Mesilatos/química , Modelos Químicos , Compostos Orgânicos , Ozônio , Praguicidas , Fotoquímica , Fatores de Tempo , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
5.
J Hazard Mater ; 192(2): 763-71, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21703757

RESUMO

Decolorization of reactive textile dyes Reactive Black 5, Reactive Blue 52, Reactive Yellow 125 and Reactive Green 15 was studied using advanced oxidation processes (AOPs) in a non-thermal plasma reactor, based on coaxial water falling film dielectric barrier discharge (DBD). Used initial dye concentrations in the solution were 40.0 and 80.0mg/L. The effects of different initial pH of dye solutions, and addition of homogeneous catalysts (H(2)O(2), Fe(2+) and Cu(2+)) on the decolorization during subsequent recirculation of dye solution through the DBD reactor, i.e. applied energy density (45-315kJ/L) were studied. Influence of residence time was investigated over a period of 24h. Change of pH values and effect of pH adjustments of dye solution after each recirculation on the decolorization was also tested. It was found that the initial pH of dye solutions and pH adjustments of dye solution after each recirculation did not influence the decolorization. The most effective decolorization of 97% was obtained with addition of 10mM H(2)O(2) in a system of 80.0mg/L Reactive Black 5 with applied energy density of 45kJ/L, after residence time of 24h from plasma treatment. Toxicity was evaluated using the brine shrimp Artemia salina as a test organism.


Assuntos
Cor , Corantes/química , Indústria Têxtil , Água/química
6.
J Hazard Mater ; 185(2-3): 1280-6, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21044816

RESUMO

Dielectric barrier discharge (DBD) was investigated for the simultaneous removal of NO(x) and SO(2) from flue gas in a coal-combustion power plant. The DBD equipment was used in either a mode where flue gas was directed through the discharge zone (direct oxidation), or a mode where produced ozonized air was injected in the flue gas stream (indirect oxidation). Removal efficiencies of SO(2) and NO for both methods were measured and compared. Oxidation of NO is more efficient in the indirect oxidation, while oxidation of SO(2) is more efficient in the direct oxidation. Addition of NH(3), has lead to efficient removal of SO(2), due to thermal reaction, and has also enhanced NO removal due to heterogeneous reactions on the surface of ammonium salt aerosols. In the direct oxidation, concentration of CO increased significantly, while it maintained its level in the indirect oxidation.


Assuntos
Carvão Mineral , Gases , Óxido Nítrico/isolamento & purificação , Dióxido de Enxofre/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...