Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(4): 2293-2307, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633091

RESUMO

Programmable nanoscale carriers, such as liposomes and DNA, are readily being explored for personalized medicine or disease prediction and diagnostics. The characterization of these nanocarriers is limited and challenging due to their complex chemical composition. Here, we demonstrate the utilization of surface-enhanced Raman spectroscopy (SERS), which provides a unique molecular fingerprint of the analytes while reducing the detection limit. In this paper, we utilize a silver coated nano-bowl shaped polydimethylsiloxane (PDMS) SERS substrate. The utilization of nano-bowl surface topology enabled the passive trapping of particles by reducing mobility, which results in reproducible SERS signal enhancement. The biological nanoparticles' dwell time in the nano-trap was in the order of minutes, thus allowing SERS spectra to remain in their natural aqueous medium without the need for drying. First, the geometry of the nano-traps was designed considering nanosized bioparticles of 50-150 nm diameter. Further, the systematic investigation of maximum SERS activity was performed using rhodamine 6 G as a probe molecule. The potential of the optimized SERS nano-bowl is shown through distinct spectral features following surface- (polyethylene glycol) and bilayer- (cholesterol) modification of empty liposomes of around 140 nm diameter. Apart from liposomes, the characterization of the highly crosslinked DNA specimens of only 60 nm in diameter was performed. The modification of DNA gel by liposome coating exhibited unique signatures for nitrogenous bases, sugar, and phosphate groups. Further, the unique sensitivity of the proposed SERS substrate displayed distinct spectral signatures for DNA micelles and drug-loaded DNA micelles, carrying valuable information to monitor drug release. In conclusion, the findings of the spectral signatures of a wide range of molecular complexes and chemical morphology of intra-membranes in their natural state highlight the possibilities of using SERS as a sensitive and instantaneous characterization alternative.

2.
J Mater Chem B ; 11(33): 7972-7985, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37505112

RESUMO

Nucleic acid-based materials showcase an increasing potential for antimicrobial drug delivery. Although numerous reports on drug-loaded DNA nanoparticles outline their pivotal antibacterial activities, their potential as drug delivery systems against bacterial biofilms awaits further studies. Among different oligonucleotide structures, micellar nanocarriers derived from amphiphilic DNA strands are of particular interest due to their spontaneous self-assembly and high biocompatibility. However, their clinical use is hampered by structural instability upon cation depletion. In this work, we used a cationic amphiphilic antibiotic (polymyxin B) to stabilize DNA micelles destined to penetrate P. aeruginosa biofilms and exhibit antibacterial/antibiofilm properties. Our study highlights how the strong affinity of this antibiotic enhances the stability of the micelles and confirms that antibacterial activity of the novel micelles remains intact. Additionally, we show that PMB micelles can penetrate P. aeruginosa biofilms and impact their metabolic activity. Finally, PMB micelles were highly safe and biocompatible, highlighting their possible application against P. aeruginosa biofilm-colonized skin wounds.


Assuntos
Micelas , Polimixina B , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , DNA
3.
Biomacromolecules ; 23(1): 303-315, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914360

RESUMO

To avert the poor bioavailability of antibiotics during S. aureus biofilm infections, a series of zwitterionic nanoparticles containing nucleic acid nanostructures were fabricated for the delivery of vancomycin. The nanoparticles were prepared with three main lipids: (i) neutral (soy phosphatidylcholine; P), (ii) positively charged ionizable (1,2-dioleyloxy-3-dimethylaminopropane; D), and (iii) anionic (1,2-dipalmitoyl-sn-glycero-3-phospho((ethyl-1',2',3'-triazole) triethylene glycolmannose; M) or (cholesteryl hemisuccinate; C) lipids. The ratio of the anionic lipid was tuned between 0 and 10 mol %, and its impact on surface charge, size, stability, toxicity, and biofilm sensitivity was evaluated. Under biofilm mimicking conditions, the enzyme degradability (via dynamic light scattering (DLS)), antitoxin (via DLS and spectrophotometry), and antibiotic release profile was assessed. Additionally, biofilm penetration, prevention (in vitro), and eradication (ex vivo) of the vancomycin loaded formulation was investigated. Compared with the unmodified nanoparticles which exhibited the smallest size (188 nm), all three surface modified formulations showed significantly larger sizes (i.e., 222-277 nm). Under simulations of biofilm pH conditions, the mannose modified nanoparticle (PDM 90/5/5) displayed ideal charge reversal from a neutral (+1.69 ± 1.83 mV) to a cationic surface potential (+17.18 ± 2.16 mV) to improve bacteria binding and biofilm penetration. In the presence of relevant bacterial enzymes, the carrier rapidly released the DNA nanoparticles to function as an antitoxin against α-hemolysin. Controlled release of vancomycin prevented biofilm attachment and significantly reduced early stage biofilm formations within 24 h. Enhanced biocompatibility and significant ex vivo potency of the PDM 90/5/5 formulation was also observed. Taken together, these results emphasize the benefit of these nanocarriers as potential therapies against biofilm infections and fills the gap for multifunctional nanocarriers that prevent biofilm infections.


Assuntos
Anti-Infecciosos , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Nanopartículas/química , Staphylococcus aureus
4.
Nat Biomed Eng ; 5(10): 1217-1227, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34654900

RESUMO

Monitoring surgical wounds post-operatively is necessary to prevent infection, dehiscence and other complications. However, the monitoring of deep surgical sites is typically limited to indirect observations or to costly radiological investigations that often fail to detect complications before they become severe. Bioelectronic sensors could provide accurate and continuous monitoring from within the body, but the form factors of existing devices are not amenable to integration with sensitive wound tissues and to wireless data transmission. Here we show that multifilament surgical sutures functionalized with a conductive polymer and incorporating pledgets with capacitive sensors operated via radiofrequency identification can be used to monitor physicochemical states of deep surgical sites. We show in live pigs that the sutures can monitor wound integrity, gastric leakage and tissue micromotions, and in rodents that the healing outcomes are equivalent to those of medical-grade sutures. Battery-free wirelessly operated bioelectronic sutures may facilitate post-surgical monitoring in a wide range of interventions.


Assuntos
Deiscência da Ferida Operatória , Ferida Cirúrgica , Animais , Técnicas de Sutura , Suturas , Suínos , Cicatrização
5.
Nanoscale ; 12(33): 17411-17425, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32794541

RESUMO

Cage-shaped nucleic acid nanocarriers are promising molecular scaffolds for the organization of polypeptides. However, there is an unmet need for facile loading strategies that truly emulate nature's host-guest systems to drive encapsulation of antimicrobial peptides (AMPs) without loss of biological activity. Herein, we develop DNA nanogels with rapid in situ loading of L12 peptide during the thermal annealing process. By leveraging the binding affinity of L12 to the polyanionic core, we successfully confine the AMPs within the DNA nanogel. We report that the thermostability of L12 in parallel with the high encapsulation efficiency, low toxicity and sustained drug release of the pre-loaded L12 nanogels can be translated into significant antimicrobial activity. Using an S. aureus model of infectious bacterial keratitis, we observe fast resolution of clinical symptoms and significant reduction of bacterial bioburden. Collectively, this study paves the way for the development of DNA nanocarriers for caging AMPs with immense significance to address the rise of resistance.


Assuntos
Ceratite , Ácidos Nucleicos , Humanos , Ceratite/tratamento farmacológico , Nanogéis , Peptídeos , Staphylococcus aureus
6.
Front Chem ; 8: 602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760699

RESUMO

The rapid emergence of drug resistance continues to outpace the development of new antibiotics in the treatment of infectious diseases. Conventional therapy is currently limited by drug access issues such as low intracellular drug accumulations, drug efflux by efflux pumps and/or enzymatic degradation. To improve access, targeted delivery using nanocarriers could provide the quantum leap in intracellular drug transport and retention. Silica nanoparticles (SiNPs) with crucial advantages such as large surface area, ease-of-functionalization, and biocompatibility, are one of the most commonly used nanoparticles in drug delivery applications. A porous variant, called the mesoporous silica nanoparticles (MSN), also confers additional amenities such as tunable pore size and volume, leading to high drug loading capacity. In the context of bacterial infections, SiNPs and its variants can act as a powerful tool for the targeted delivery of antimicrobials, potentially reducing the impact of high drug dosage and its side effects. In this review, we will provide an overview of SiNPs synthesis, its structural proficiency which is critical in loading and conjugation of antimicrobials and its role in different antimicrobial applications with emphasis on intracellular drug targeting in anti-tuberculosis therapy, nitric oxide delivery, and metal nanocomposites. The role of SiNPs in antibiofilm coatings will also be covered in the context of nosocomial infections and surgical implants.

7.
Pharmaceutics ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650506

RESUMO

Conventional antibiotic therapy is often challenged by poor drug penetration/accumulation at infection sites and poses a significant burden to public health. Effective strategies to enhance the therapeutic efficacy of our existing arsenal include the use of nanoparticulate delivery platforms to improve drug targeting and minimize adverse effects. However, these nanocarriers are often challenged by poor loading efficiency, rapid release and inefficient targeting. Nucleic acid hybrid nanocarriers are nucleic acid nanosystems complexed or functionalized with organic or inorganic materials. Despite their immense potential in antimicrobial therapy, they are seldom utilized against pathogenic bacteria. With the emergence of antimicrobial resistance and the associated complex interplay of factors involved in antibiotic resistance, nucleic acid hybrids represent a unique opportunity to deliver antimicrobials against resistant pathogens and to target specific genes that control virulence or resistance. This review provides an unbiased overview on fabricating strategies for nucleic acid hybrids and addresses the challenges of pristine oligonucleotide nanocarriers. We report recent applications to enhance pathogen targeting, binding and control drug release. As multifunctional next-generational antimicrobials, the challenges and prospect of these nanocarriers are included.

8.
Carbohydr Polym ; 241: 116345, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507219

RESUMO

Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.'


Assuntos
Materiais Biocompatíveis , Hidrogéis , Polissacarídeos Bacterianos , Medicina Regenerativa , Engenharia Tecidual , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Humanos
9.
J Control Release ; 324: 620-632, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525012

RESUMO

The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracellular retention. While nanocarriers have received tremendous attention for antibiotic delivery against persistent pathogens, they suffer daunting challenges such as low drug loading, poor retention and untimely release of hydrophilic cargos. Here, a hybrid system (Van_DNL) is fabricated wherein nucleic acid nanogels are caged within a liposomal vesicle for antibiotic delivery. The central principle of this approach relies on exploiting non-covalent electrostatic interactions between cationic cargos and polyanionic DNA to immobilize antibiotics and enable precise temporal release against intracellular S. aureus. In vitro characterization of Van_DNL revealed a stable homogenous formulation with circular morphology and enhanced vancomycin loading efficiency. The hybrid system significantly sustained the release of vancomycin over 24 h compared to liposomal or nanogel controls. Under enzymatic conditions relevant to S. aureus infections, lipase triggered release of vancomycin was observed from the hybrid. While using Van_DNL to treat S. aureus infected macrophages, a dose dependent reduction in intracellular bacterial load was observed over 24 h and exposure to Van_DNL for 48 h caused negligible cellular toxicity. Pre-treatment of macrophages with the antimicrobial hybrid resulted in a strong anti-inflammatory activity in synergy with vancomycin following endotoxin stimulation. Conceptually, these findings highlight these hybrids as a unique and universal platform for synergistic antimicrobial and anti-inflammatory therapy against persistent infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Ácidos Nucleicos , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Nanogéis , Ácidos Nucleicos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
10.
J Control Release ; 313: 120-130, 2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629042

RESUMO

There is growing interest in the development of nucleic acid nanostructures as smart functional materials for applications in drug delivery. Inspired by the diverse physical interactions that exist in nature, crosslinked DNA nanostructures can serve as attractive affinity binding networks that interact with therapeutic cargos or living cells. Herein we report a strategy that addresses the challenges of topical oligopeptide therapy by exploiting high binding affinity between polyanionic DNA nanostructures and cationic antimicrobial peptides (AMPs) to fabricate hydrogels that release a model antimicrobial L12 peptide in response to pathogenic S. aureus infections. We further demonstrated controlled peptide release profiles via the DNA hydrogels that were biocompatible and delivered superior antimicrobial activity against nuclease-releasing susceptible and methicillin-resistant S. aureus infections. Single application of the L12-loaded DNA hydrogels on porcine explant S. aureus infections revealed potent efficacy after 24h. As a result of the capacity of the crosslinked DNA nanostructures to elicit a strong anti-inflammatory response, in vivo treatment of mice excision wounds translated into faster healing rates. Overall, the crosslinked DNA nanostructures reported in this study offer significant advantage as functional wound dressings and their future adaptation holds equally great promise for the delivery of cationic antimicrobials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , DNA/química , Hidrogéis/química , Nanoestruturas/química , Polímeros/química , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bandagens , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Polieletrólitos , Reologia , Pele , Eletricidade Estática , Suínos , Cicatrização/efeitos dos fármacos
11.
Macromol Biosci ; 18(10): e1800196, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066983

RESUMO

Protein-based polymeric polyelectrolytes are emerging as alternative synthetic nanoparticles owing to their biodegradability and biocompatibility. However, potential in vivo toxicity remains a significant challenge. Herein an array of protein polyelectrolytes generated from cationic human serum albumin (cHSA) and polyethylene glycol (PEG) are synthesized via synthetic customization as antimicrobials for the treatment of systemic infections. By varying PEG molecular weight and chain length, in vitro hemolytic activity can be fine-tuned without significantly affecting antimicrobial potency. The optimal hybrid material, PEG (2000)18 -cHSA, with potent antimicrobial character, low hemolytic activity, and in vitro biofilm disruptive properties is identified. Surface plasmon resonance (SPR) evaluation demonstrates significantly higher binding activity of the protein nanoparticles to bacteria cell wall components and microfluidic live-cell imaging indicates that the nanoparticles act through a membranolytic mechanism. Given their low susceptibility to drug resistance and potent activity against resistant bacteria strains, these findings establish the PEGylated albumin nanoparticles as a potent weaponry against drug resistance and biofilm-related infection.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Nanopartículas/química , Albumina Sérica Humana , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Eritrócitos/citologia , Humanos , Polietilenoglicóis/química , Albumina Sérica Humana/química , Albumina Sérica Humana/farmacologia
12.
Adv Healthc Mater ; 7(13): e1701388, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29508561

RESUMO

While physically crosslinked polycarbonate hydrogels are effective drug delivery platforms, their hydrophobic nature and lack of side chain functionality or affinity ligands for controlled release of hydrophilic drugs underscore the importance of their chemical compositions. This study evaluates an array of anionic hydrogel systems of phenylboronic acid functionalized triblock copolymers prepared via reversible physical interactions. Variation of key chemical functionalities while maintaining similar core structural features demonstrates the influence of the substitution position and protection of the boronic acid functionality on gel viscoelasticity and mechanical strength at physiological pH. The optimum gel systems obtained from the meta-substituted copolymers (m-PAP) are stable at physiological pH and nontoxic to mammalian dermal cells. The polymyxin B loaded m-PAP hydrogels demonstrate controlled in vitro drug release kinetics and in vitro antimicrobial activity against Pseudomonas aeruginosa over 48 h. In vivo antimicrobial efficacy of the drug loaded hydrogels further corroborates the in vitro results, demonstrating sustained antimicrobial activity against P. aeruginosa burn wound infections. The current strategy described in this study demonstrates a straightforward approach in designing physiologically relevant boronic acid hydrogel systems for controlled release of cationic antimicrobials for future clinical applications.


Assuntos
Antibacterianos/farmacocinética , Ácidos Borônicos/química , Hidrogéis/química , Polimixina B/farmacocinética , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/química , Queimaduras/microbiologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Teste de Materiais , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Cimento de Policarboxilato/química , Polimixina B/química , Pseudomonas aeruginosa/patogenicidade , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
13.
Acta Biomater ; 57: 103-114, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457962

RESUMO

The escalating threat of antimicrobial resistance has increased pressure to develop novel therapeutic strategies to tackle drug-resistant infections. Antimicrobial peptides have emerged as a promising class of therapeutics for various systemic and topical clinical applications. In this study, the de novo design of α-helical peptides with idealized facial amphiphilicities, based on an understanding of the pertinent features of protein secondary structures, is presented. Synthetic amphiphiles composed of the backbone sequence (X1Y1Y2X2)n, where X1 and X2 are hydrophobic residues (Leu or Ile or Trp), Y1 and Y2 are cationic residues (Lys), and n is the number repeat units (2 or 2.5 or 3), demonstrated potent broad-spectrum antimicrobial activities against clinical isolates of drug-susceptible and multi-drug resistant bacteria. Live-cell imaging revealed that the most selective peptide, (LKKL)3, promoted rapid permeabilization of bacterial membranes. Importantly, (LKKL)3 not only suppressed biofilm growth, but effectively disrupted mature biofilms after only 2h of treatment. The peptides (LKKL)3 and (WKKW)3 suppressed the production of LPS-induced pro-inflammatory mediators to levels of unstimulated controls at low micromolar concentrations. Thus, the rational design strategies proposed herein can be implemented to develop potent, selective and multifunctional α-helical peptides to eradicate drug-resistant biofilm-associated infections. STATEMENT OF SIGNIFICANCE: Antimicrobial peptides (AMPs) are increasingly explored as therapeutics for drug-resistant and biofilm-related infections to help expand the size and quality of the current antibiotic pipeline in the face of mounting antimicrobial resistance. Here, synthetic peptides rationally designed based upon principles governing the folding of natural α-helical AMPs, comprising the backbone sequence (X1Y1Y2X2)n, and which assemble into α-helical structures with idealized facial amphiphilicity, is presented. These multifunctional peptide amphiphiles demonstrate high bacterial selectivity, promote the disruption of pre-formed drug-resistant biofilms, and effectively neutralize endotoxins at low micromolar concentrations. Overall, the design strategies presented here could provide a useful tool for developing therapeutic peptides with broad-ranging clinical applications from the treatment and prevention of drug-resistant biofilms to the neutralization of bacterial endotoxins.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Bactérias/crescimento & desenvolvimento , Biofilmes , Farmacorresistência Bacteriana , Endotoxinas/química , Fenômenos Fisiológicos Bacterianos , Estrutura Secundária de Proteína
14.
Acta Biomater ; 46: 211-220, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27686042

RESUMO

Amphotericin B (AmB), a poorly soluble and toxic antifungal drug, was encapsulated into polymeric micelles self-assembled from phenylboronic acid-functionalized polycarbonate/PEG (PEG-PBC) and urea-functionalized polycarbonate/PEG (PEG-PUC) diblock copolymers via hydrogen-bonding, boronate ester bond, and/or ionic interactions between the boronic acid group in the micellar core and amine group in AmB. Three micellar formulations were prepared: AmB/B micelles using PEG-PBC, AmB/U micelles using PEG-PUC and AmB/B+U mixed micelles using 1:1molar ratio of PEG-PBC and PEG-PUC. The average particle sizes of the micelles were in the range of 54.4-84.8nm with narrow size distribution and zeta potentials close to neutral. UV-Vis absorption analysis indicated that AmB/B micelles significantly reduced AmB aggregation status due to the interactions between AmB and the micellar core, while Fungizone® and AmB/U micelles had no effect. AmB/B+U mixed micelles exerted an intermediate effect. Both AmB/B micelles and AmB/B+U mixed micelles showed sustained drug release, with 48.6±2.1% and 59.2±1.8% AmB released respectively after 24hunder sink conditions, while AmB/U micelles displayed a burst release profile. All AmB-loaded micelles showed comparable antifungal activity to free AmB or Fungizone®, while AmB/B micelles and AmB/B+U mixed micelles were much less hemolytic than other formulations. Histological examination showed that AmB/B and AmB/B+U micelles led to a significantly lower number of apoptotic cells in the kidneys compared to Fungizone®, suggesting reduced nephrotoxicity of the micellar formulations in vivo. These phenylboronic acid-functionalized polymeric micelle systems are promising drug carriers for AmB to reduce non-specific toxicities without compromise in antifungal activity. STATEMENT OF SIGNIFICANCE: There is a pressing need for a novel and cost-effective delivery system to reduce the toxicity induced by the antifungal agent, amphotericin B (AmB). In this study, phenylboronic acid-functionalized polycarbonate/PEG diblock copolymers were used to fabricate micelles for improved AmB-micelle interaction via the manipulation of hydrogen-bonding, boronate ester bond, ionic and hydrophobic interactions. Compared to free AmB and Fungizone®, the resultant micellar systems displayed improved stability while reducing non-specific toxicities without a compromise in antifungal activity. These findings demonstrate the potential of biodegradable functional polycarbonate micellar systems as promising carriers of AmB for the treatment of systemic fungal infections.


Assuntos
Anfotericina B/farmacologia , Materiais Biocompatíveis/farmacologia , Micelas , Polietilenoglicóis/química , Animais , Antifúngicos/farmacologia , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Preparações de Ação Retardada/farmacologia , Liberação Controlada de Fármacos , Feminino , Hemólise/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Cimento de Policarboxilato/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Análise Espectral , Eletricidade Estática
15.
J Enzyme Inhib Med Chem ; 31(sup3): 194-204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27389167

RESUMO

Oxidative stress is a much-appreciated phenomenon associated with the progression of neurodegenerative diseases (NDDs) due to imbalances in redox homeostasis. The poor correlations between the in vitro benefits and clinical trials of direct radical scavengers have prompted research into indirect antioxidant enzymes such as Nrf2. Activation of Nrf2 leads to the upregulation of a myriad of cytoprotective and antioxidant enzymes/proteins. Traditionally, early Nrf2-activators were studied as chemoprotective agents. There is a consequential lack of clinical trials testing Nrf2 activation in NDDs. However, there is abundant evidence of their utility in pre-clinical studies. Herein, we review the endogenous Nrf2 regulatory pathway and avenues for targeting this pathway. Furthermore, we provide updated information on pre-clinical studies for natural and synthetic Nrf2 activators. On the basis of our findings, we posit that successful therapeutics for NDDs rely on the design of potent synthetic Nrf2 activators with a careful combination of other neuroprotective activities.


Assuntos
Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...