Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 221: 118782, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803046

RESUMO

Smart control in water systems aims to reduce the cost of infrastructure expansion by better utilizing the available capacity through real-time control. The recent availability of sensors and advanced data processing is expected to transform the view of water system operators, increasing the need for deploying a new generation of data-driven control solutions. To that end, this paper proposes a data-driven control framework for combined wastewater and stormwater networks. We propose to learn the effect of wet- and dry-weather flows through the variation of water levels by deploying a number of level sensors in the network. To tackle the challenges associated with combining hydraulic and hydrologic modelling, we adopt a Gaussian process-based predictive control tool to capture the dynamic effect of rain and wastewater inflows, while applying domain knowledge to preserve the balance of water volumes. To show the practical feasibility of the approach, we test the control performance on a laboratory setup, inspired by the topology of a real-world wastewater network. We compare our method to a rule-based controller currently used by the water utility operating the proposed network. Overall, the controller learns the wastewater load and the temporal dynamics of the network, and therefore significantly outperforms the baseline controller, especially during high-intensity rain periods. Finally, we discuss the benefits and drawbacks of the approach for practical real-time control implementations.


Assuntos
Esgotos , Águas Residuárias , Hidrologia , Chuva , Água
2.
ISA Trans ; 93: 399-409, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30955833

RESUMO

In order to reduce the global energy consumption and avoid highest power peaks during operation of manufacturing systems, an optimization-based controller for selective switching on/off of peripheral devices in a test bench that emulates the energy consumption of a periodic system is proposed. First, energy consumption models for the test-bench devices are obtained based on data and subspace identification methods. Next, a control strategy is designed based on both optimization and receding horizon approach, considering the energy consumption models, operating constraints, and the real processes performed by peripheral devices. Thus, a control policy based on dynamical models of peripheral devices is proposed to reduce the energy consumption of the manufacturing systems without sacrificing the productivity. Afterward, the proposed strategy is validated in the test bench and comparing to a typical rule-based control scheme commonly used for these manufacturing systems. Based on the obtained results, reductions near 7% could be achieved allowing improvements in energy efficiency via minimization of the energy costs related to nominal power purchased.

3.
ISA Trans ; 69: 175-186, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28416182

RESUMO

Model predictive control (MPC) is a suitable strategy for the control of large-scale systems that have multiple design requirements, e.g., multiple physical and operational constraints. Besides, an MPC controller is able to deal with multiple control objectives considering them within the cost function, which implies to determine a proper prioritization for each of the objectives. Furthermore, when the system has time-varying parameters and/or disturbances, the appropriate prioritization might vary along the time as well. This situation leads to the need of a dynamical tuning methodology. This paper addresses the dynamical tuning issue by using evolutionary game theory. The advantages of the proposed method are highlighted and tested over a large-scale water supply network with periodic time-varying disturbances. Finally, results are analyzed with respect to a multi-objective MPC controller that uses static tuning.

4.
Stud Health Technol Inform ; 207: 410-2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25488247

RESUMO

This extended abstract addresses the preliminary results of applying uncertainty handling strategies and advanced control techniques to the inventary management of hospitality pharmacy. Inventory management is one of the main tasks that a pharmacy department has to carry out in a hospital. It is a complex problem because it requires to establish a tradeoff between contradictory optimization criteria. The final goal of the proposed research is to update the inventory management system of hospitals such that it is possible to reduce the average inventory while maintaining preestablished clinical guarantees.


Assuntos
Controle de Custos/métodos , Crime/prevenção & controle , Inventários Hospitalares/métodos , Serviço de Farmácia Hospitalar/organização & administração , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...