Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480476

RESUMO

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Assuntos
Anfetamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Angiotensina II , Benzimidazóis , Compostos de Bifenilo , Corpo Estriado , Dopamina , Animais , Anfetamina/farmacologia , Masculino , Dopamina/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Benzimidazóis/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Ratos Wistar , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Interação Social/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
2.
Front Pharmacol ; 12: 647747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012397

RESUMO

Background: Amphetamine (AMPH) alters neurons, glia and microvessels, which affects neurovascular unit coupling, leading to disruption in brain functions such as attention and working memory. Oxidative stress plays a crucial role in these alterations. The angiotensin type I receptors (AT1-R) mediate deleterious effects, such as oxidative/inflammatory responses, endothelial dysfunction, neuronal oxidative damage, alterations that overlap with those observed from AMPH exposure. Aims: The aim of this study was to evaluate the AT1-R role in AMPH-induced oxidative stress and glial and vascular alterations in the prefrontal cortex (PFC). Furthermore, we aimed to evaluate the involvement of AT1-R in the AMPH-induced short-term memory and working memory deficit. Methods: Male Wistar rats were repeatedly administered with the AT1-R blocker candesartan (CAND) and AMPH. Acute oxidative stress in the PFC was evaluated immediately after the last AMPH administration by determining lipid and protein peroxidation. After 21 off-drug days, long-lasting alterations in the glia, microvessel architecture and to cognitive tasks were evaluated by GFAP, CD11b and von Willebrand immunostaining and by short-term and working memory assessment. Results: AMPH induced acute oxidative stress, long-lasting glial reactivity in the PFC and a working memory deficit that were prevented by AT1-R blockade pretreatment. Moreover, AMPH induces transient angiogenesis in PFC via AT1-R. AMPH did not affect short-term memory. Conclusion: Our results support the protective role of AT1-R blockade in AMPH-induced oxidative stress, transient angiogenesis and long-lasting glial activation, preserving working memory performance.

3.
Eur J Neurosci ; 54(5): 5705-5716, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320503

RESUMO

Astrocytes play an essential role in the genesis, maturation and regulation of the neurovascular unit. Multiple evidence support that astrocyte reactivity has a close relationship to neurovascular unit dysfunction, oxidative stress and inflammation, providing a suitable scenario for the development of mental disorders. Ketamine has been proposed as a single-use antidepressant treatment in major depression, and its antidepressant effects have been associated with anti-inflammatory properties. However, Ketamine long-lasting effects over the neurovascular unit components remain unclear. Angiotensin II AT1 receptor (AT1 -R) blockers have anti-inflammatory, antioxidant and neuroprotective effects. The present work aims to distinguish the acute and long-term Ketamine effects over astrocytes response extended to other neurovascular unit components, and the involvement of AT1 -R, in prefrontal cortex and ventral tegmental area. Male Wistar rats were administered with AT1 -R antagonist Candesartan/Vehicle (days 1-10) and Ketamine/Saline (days 6-10). After 14 days drug-free, at basal conditions or after Ketamine Challenge, the brains were processed for oxidative stress analysis, cresyl violet staining and immunohistochemistry for glial, neuronal activation and vascular markers. Repeated Ketamine administration induced long-lasting region-dependent astrocyte reactivity and morphological alterations, and neuroadaptative changes observed as exacerbated oxidative stress and neuronal activation, prevented by the AT1 -R blockade. Ketamine Challenge decreased microglial and astrocyte reactivity and augmented cellular apoptosis, independently of previous treatment. Overall, AT1 -R is involved in the development of neuroadaptative changes induced by repeated Ketamine administration but does not interfere with the acute effects supporting the potential use of AT1 -R blockers as a Ketamine complementary therapy in mental disorders.


Assuntos
Astrócitos , Ketamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Animais , Ketamina/toxicidade , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...