Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 34(1): 257-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31148590

RESUMO

Multiple myeloma is the second most frequent hematological cancer after lymphoma and remains an incurable disease. The pervasive support provided by the bone marrow microenvironment to myeloma cells is crucial for their survival. Here, an unbiased assessment of receptor tyrosine kinases overexpressed in myeloma identified ROR2, a receptor for the WNT noncanonical pathway, as highly expressed in myeloma cells. Its ligand, WNT5A is the most abundant growth factor in the bone marrow of myeloma patients. ROR2 mediates myeloma cells interactions with the surrounding bone marrow and its depletion resulted in detachment of myeloma cells from their niche in an in vivo model, triggering apoptosis and thus markedly delaying disease progression. Using in vitro and ex vivo 3D-culture systems, ROR2 was shown to exert a pivotal role in the adhesion of cancer cells to the microenvironment. Genomic studies revealed that the pathways mostly deregulated by ROR2 overexpression were PI3K/AKT and mTOR. Treatment of cells with specific PI3K inhibitors already used in the clinic reduced myeloma cell adhesion to the bone marrow. Together, our findings support the view that ROR2 and its downstream targets represent a novel therapeutic strategy for the large subgroup of MM patients whose cancer cells show ROR2 overexpression.


Assuntos
Medula Óssea/metabolismo , Mieloma Múltiplo/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Microambiente Tumoral/fisiologia , Animais , Medula Óssea/patologia , Adesão Celular/fisiologia , Xenoenxertos , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
2.
Leukemia ; 25(5): 814-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21331069

RESUMO

In acute promyelocytic leukemia (APL) the retinoic acid receptor alpha (RARα) becomes an oncogene through the fusion with several partners, mostly with promyelocytic leukemia protein (PML), all of which have in common the presence of a self-association domain. The new fusion proteins, therefore, differently from the wild-type RARα, which forms only heterodimers with retinoic X receptor alpha, are also able to homo-oligomerize. The presence of such a domain has been suggested to be crucial for the leukemogenic potential of the chimeric proteins found in APL blasts. Whether or not any self-association domain is sufficient to bestow a leukemogenic activity on RARα is still under investigation. In this work, we address this question using two different X-RARα chimeras, where X represents the coiled-coil domain of PML (CC-RARα) or the oligomerization portion of the yeast transcription factor GCN4 (GCN4-RARα). We demonstrate that in vitro both proteins have transforming potential, and recapitulate the main PML-RARα biological properties, but CC-RARα is uniquely able to disrupt PML nuclear bodies. Indeed, in vivo only the CC-RARα chimera induces efficiently APL in a murine transplantation model. Thus, the PML CC domain represents the minimal structural determinant indispensable to transform RARα into an oncogenic protein.


Assuntos
Transformação Celular Neoplásica , Leucemia Promielocítica Aguda/genética , Proteínas Nucleares/genética , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes de Fusão/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Western Blotting , Cromatografia em Gel , Imunofluorescência , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Imunoprecipitação , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Camundongos , Proteína da Leucemia Promielocítica , Multimerização Proteica , RNA Mensageiro/genética , Receptor alfa de Ácido Retinoico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...