Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351542

RESUMO

About 75% of all breast cancers are hormone receptor-positive (HR+). However, the efficacy of endocrine therapy is limited due to the high rate of either pre-existing or acquired resistance. In this work we reconstructed the pathways around estrogen receptor (ER), mTOR, and cyclin D in order to compare the effects of CDK4/6 and PI3K/AKT/mTOR inhibitors. A positive feedback loop links mTOR and ER that support each other. We subsequently considered whether a combined or sequential inhibition of CDK4/6 and PI3K/AKT/mTOR could ensure better results. Studies indicate that inhibition of CDK4/6 activates mTOR as an escape mechanism to ensure cell proliferation. In literature, the little evidence dealing with this topic suggests that pre-treatment with mTOR pathway inhibitors could prevent or delay the onset of CDK4/6 inhibitor resistance. Additional studies are needed in order to find biomarkers that can identify patients who will develop this resistance and in whom the sensitivity to CDK4/6 inhibitors can be restored.

2.
BioDrugs ; 33(6): 613-620, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529317

RESUMO

Breast cancer is the most frequent tumor in women. The recent advent of cyclin-dependent kinase (CDK) 4/6 inhibitors palbociclib and ribociclib has represented a major step forward for patients with hormone receptor-positive breast cancer. These two agents have showed similar efficacy in terms of breast cancer outcome but different cardiotoxic effects. In particular, ribociclib, but not palbociclib, has been associated with QT interval prolongation, and the mechanisms underlying this event are still unclear. In order to clarify such difference, we matched the candidate genes associated with QT interval prolongation with genes whose expression is altered following palbociclib or ribociclib treatment. We also investigated whether pharmacokinetic and pharmacodynamic characteristics, such as IC50 (hERG) [concentration of drug producing 50% inhibition (human ether-à-go-go related gene)] and maximum concentration (Cmax), could justify the different effects on QT interval prolongation. Our results show that ribociclib, but not palbociclib, could act by down-regulating the expression of KCNH2 (encoding for potassium channel hERG) and up-regulating SCN5A and SNTA1 (encoding for sodium channels Nav1.5 and syntrophin-α1, respectively), three genes associated with long QT syndrome. Consistent with the cardiotoxicity induced by ribociclib, its IC50 (hERG)/free concentration (Cmax free) ratio is closer to the safety threshold than that of palbociclib. In summary, we hypothesize that the different cardiotoxicity associated with ribociclib and palbociclib could be due to the alteration of potassium and sodium channels induced by ribociclib. A better comprehension of the mechanisms of cardiac channelopathies and drug-induced QT interval prolongation will be fundamental to avoid serious and potentially lethal adverse events and, as a consequence, optimize the management of breast cancer patients.


Assuntos
Aminopiridinas/efeitos adversos , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/etiologia , Piperazinas/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Purinas/efeitos adversos , Piridinas/efeitos adversos , Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Análise de Dados , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Piridinas/uso terapêutico
3.
J Oncol ; 2019: 9681698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275385

RESUMO

CXCL12 is a chemokine that acts through CXCR4 and ACKR3 receptors and plays a physiological role in embryogenesis and haematopoiesis. It has an important role also in tumor development, since it is released by stromal cells of tumor microenvironment and alters the behavior of cancer cells. Many studies investigated the roles of CXCL12 in order to understand if it has an anti- or protumor role. In particular, it seems to promote tumor invasion, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in pancreatic cancer. Nevertheless, some evidence shows opposite functions; therefore research on CXCL12 is still ongoing. These discrepancies could be due to the presence of at least six CXCL12 splicing isoforms, each with different roles. Interestingly, three out of six variants have the highest levels of expression in the pancreas. Here, we report the current knowledge about the functions of this chemokine and then focus on pancreatic cancer. Moreover, we discuss the methods applied in recent studies in order to understand if they took into account the existence of the CXCL12 isoforms.

4.
PLoS One ; 14(5): e0215990, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048929

RESUMO

INTRODUCTION: Pancreatic ductal adenocarcinoma is associated to dismal prognosis despite the use of palliative chemotherapy, partly due to the lack of knowledge of biological processes underlying disease progression. Exosomes have been identified as biomarkers sources in different cancer types. Aim of the study was to analyse the contents of circulating exosomes in patients with pancreatic cancer who received palliative chemotherapy. PATIENTS AND METHODS: Patients were submitted to blood sample collection before chemotherapy (T0) and after 3 months (T3). We quantified by an ELISA-based technique specific proteins of cancer-derived exosomes (CD44,CD44v6,EpCAM,CD9,CD81,Tspan8,Integrin α6,Integrin ß4,CD24,CXCR4). We correlated the baseline levels of these factors and changes between T3 and T0 and survival outcomes. Survival analyses were performed by Kaplan-Meier method. Correlation was assessed by log-rank test and level of statistical significance was set at 0.05. Multivariate analysis was performed by logistic regression analysis. RESULTS: Nineteen patients were enrolled. EpCAM T0 levels and increased EpCAM levels from T0 to T3 were those mostly associated with differences in survival. Patients having higher EpCAM had median progression free survival (PFS) of 3.18vs7.31 months (HR:2.82,95%CI:1.03-7.73,p = 0.01). Overall survival (OS) was shorter for patients having higher EpCAM (5.83vs16.45 months,HR:6.16,95%CI:1.93-19.58,p = 0.0001) and also response rates (RR) were worse (20%vs87%,p = 0.015). EpCAM increase during treatment was associated with better median PFS (2.88vs7.31 months,HR:0.24,95%CI:0.04-1.22,p = 0.003). OS was also better (8.75vs11.04 months, HR:0.77,95%CI:0.21-2.73,p = 0.66) and RR were 60%vs20% (p = 0.28). Among clinical factors that might determine changes on PFS and OS, only ECOG PS was associated to significantly worse PFS and OS (p = 0.0137and<0.001 respectively).Multivariate analysis confirmed EpCAM T0 levels and EpCAM T0/T3 changes as independent prognostic factors for PFS. CONCLUSIONS: Pancreatic cancer patients exosomes express EpCAM, whose levels change during treatment. This represents a useful prognostic factor and also suggests that future treatment modalities who target EpCAM should be tested in pancreatic cancer patients selected by exosome EpCAM expression.


Assuntos
Carcinoma Ductal Pancreático/genética , Exossomos/genética , Regulação Neoplásica da Expressão Gênica/genética , Adenocarcinoma/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Progressão da Doença , Intervalo Livre de Doença , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Prognóstico , Transcriptoma/genética , Neoplasias Pancreáticas
5.
Front Oncol ; 8: 450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370253

RESUMO

Bladder cancer is a very common malignancy. Although new treatment strategies have been developed, the identification of new therapeutic targets and reliable diagnostic/prognostic biomarkers for bladder cancer remains a priority. Generally, they are found among differentially expressed genes between patients and healthy subjects or among patients with different tumor stages. However, the classical approach includes processing these data taking into consideration only the expression of each single gene regardless of the expression of other genes. These complex gene interaction networks can be revealed by a recently developed systems biology approach called Weighted Gene Co-expression Network Analysis (WGCNA). It takes into account the expression of all genes assessed in an experiment in order to reveal the clusters of co-expressed genes (modules) that, very probably, are also co-regulated. If some genes are co-expressed in controls but not in pathological samples, it can be hypothesized that a regulatory mechanism was altered and that it could be the cause or the effect of the disease. Therefore, genes within these modules could play a role in cancer and thus be considered as potential therapeutic targets or diagnostic/prognostic biomarkers. Here, we have reviewed all the studies where WGCNA has been applied to gene expression data from bladder cancer patients. We have shown the importance of this new approach in identifying candidate biomarkers and therapeutic targets. They include both genes and miRNAs and some of them have already been identified in the literature to have a role in bladder cancer initiation, progression, metastasis, and patient survival.

6.
Cell Oncol (Dordr) ; 39(4): 379-88, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27240826

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Up till now, the patient's prognosis remains poor which, among others, is due to the paucity of reliable early diagnostic biomarkers. In the past, candidate diagnostic biomarkers and therapeutic targets have been delineated from genes that were found to be differentially expressed in normal versus tumour samples. Recently, new systems biology approaches have been developed to analyse gene expression data, which may yield new biomarkers. As of yet, the weighted gene co-expression network analysis (WGCNA) tool has not been applied to PDAC microarray-based gene expression data. METHODS: PDAC microarray-based gene expression datasets, listed in the Gene Expression Omnibus (GEO) database, were analysed. After pre-processing of the data, we built two final datasets, Normal and PDAC, encompassing 104 and 129 patient samples, respectively. Next, we constructed a weighted gene co-expression network and identified modules of co-expressed genes distinguishing normal from disease conditions. Functional annotations of the genes in these modules were carried out to highlight PDAC-associated molecular pathways and common regulatory mechanisms. Finally, overall survival analyses were carried out to assess the suitability of the genes identified as prognostic biomarkers. RESULTS: Using WGCNA, we identified several key genes that may play important roles in PDAC. These genes are mainly related to either endoplasmic reticulum, mitochondrion or membrane functions, exhibit transferase or hydrolase activities and are involved in biological processes such as lipid metabolism or transmembrane transport. As a validation of the applied method, we found that some of the identified key genes (CEACAM1, MCU, VDAC1, CYCS, C15ORF52, TMEM51, LARP1 and ERLIN2) have previously been reported by others as potential PDAC biomarkers. Using overall survival analyses, we found that several of the newly identified genes may serve as biomarkers to stratify PDAC patients into low- and high-risk groups. CONCLUSIONS: Using this new systems biology approach, we identified several genes that appear to be critical to PDAC development. As such, they may represent potential diagnostic biomarkers as well as therapeutic targets with clinical utility.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Redes Reguladoras de Genes , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/mortalidade , Perfilação da Expressão Gênica/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/mortalidade , Análise de Sobrevida , Transcriptoma
7.
PLoS One ; 11(4): e0153061, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27074008

RESUMO

The sustained exploitation of marine populations requires an understanding of a species' adaptive seascape so that populations can track environmental changes from short- and long-term climate cycles and from human development. The analysis of the distributions of genetic markers among populations, together with correlates of life-history and environmental variability, can provide insights into the extent of adaptive variation. Here, we examined genetic variability among populations of mature European anchovies (n = 531) in the Adriatic (13 samples) and Tyrrhenian seas (2 samples) with neutral and putative non-neutral microsatellite loci. These genetic markers failed to confirm the occurrence of two anchovy species in the Adriatic Sea, as previously postulated. However, we found fine-scale population structure in the Adriatic, especially in northern areas, that was associated with four of the 13 environmental variables tested. Geographic gradients in sea temperature, salinity and dissolved oxygen appear to drive adaptive differences in spawning time and early larval development among populations. Resolving adaptive seascapes in Adriatic anchovies provides a means to understand mechanisms underpinning local adaptation and a basis for optimizing exploitation strategies for sustainable harvests.


Assuntos
Biodiversidade , Peixes/genética , Variação Genética , Repetições de Microssatélites , Animais , Meio Ambiente , Marcadores Genéticos , Genética Populacional , Genótipo , Oceanos e Mares
8.
Mol Diagn Ther ; 20(2): 111-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26940073

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a developmentally vital reversible process by which fully differentiated cells lose their epithelial features and acquire a migratory mesenchymal phenotype. EMT contributes to the metastatic potential of tumors. The expression profile and other biological properties of EMT suggest potential targets for cancer therapy, including in renal-cell carcinoma (RCC). The preclinical and clinical results have substantiated the promises that dysregulated elements leading to EMT can be a potential target in RCC patients. In this study, we illustrated the pathogenic and prognostic role of EMT in RCC. In addition, we reconstructed, by literature analysis, the different pathways implicated in the EMT process, thus supporting the rational for future EMT-directed therapeutic approaches for RCC patients.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Neoplasias Renais/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/patologia , Terapia de Alvo Molecular , Prognóstico , Transdução de Sinais/efeitos dos fármacos
9.
Oncotarget ; 6(31): 32161-8, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26452128

RESUMO

Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel-Lindau (VHL) gene and at least one out of three chromatin regulating genes BRCA1-associated protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 and SETD2 genes. Each variation damages these genes with different severity levels. Unfortunately for most of these mutations the molecular effect is unknown, so precluding a severity classification. Moreover, the huge number of these gene mutations does not allow to perform experimental assays for each of them. By bioinformatic tools, we performed predictions of the molecular effects of all mutations lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a mutation alters protein function directly or by splicing pattern destruction and how much severely. This classification could be useful to reveal correlation with patients' outcome, to guide experiments, to select the variations that are worth to be included in translational/association studies, and to direct gene therapies.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Biologia Computacional , Análise Mutacional de DNA/métodos , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA , Bases de Dados Genéticas , Predisposição Genética para Doença , Humanos , Neoplasias Renais/patologia , Fenótipo , Prognóstico
10.
Expert Rev Mol Diagn ; 15(9): 1201-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26166446

RESUMO

Several novel recurrent mutations of histone modifying and chromatin remodeling genes have been identified in renal cell carcinoma. These mutations cause loss of function of several genes located in close proximity to VHL and include PBRM1, BAP1 and SETD2. PBRM1 encodes for BAF180, a component of the SWI/SNF chromatin remodeling complex, and is inactivated in, on average, 36% of clear cell renal cell carcinoma (ccRCC). Mutations of BAP1 encode for the histone deubiquitinase BRCA1 associated protein-1, and are present in 10% of ccRCCs. They are largely mutually exclusive with PBRM1 mutations. Mutations to SETD2, a histone methyltransferase, occur in 10% of ccRCC. BAP1- or SETD2-mutated ccRCCs have been associated with poor overall survival, while PBRM1 mutations seem to identify a favorable group of ccRCC tumors. This review describes the roles of PBRM1, BAP1 and SETD2 in the development and progression of ccRCC and their potential for future personalized approaches.


Assuntos
Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Carcinoma de Células Renais/terapia , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Epigenômica/métodos , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Mutação , Taxa de Mutação , Medicina de Precisão , Prognóstico , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...