Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Exp Mol Med ; 55(5): 965-973, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121973

RESUMO

Insulin and insulin-like growth factor 1 (IGF-1) signaling regulate cellular growth and glucose metabolism in the myocardium. However, their physiological role in the cells of the cardiac conduction system has never been explored. Therefore, we sought to determine the spatiotemporal function of insulin/IGF-1 receptors in the sinoatrial node (SAN). We generated cardiac conduction cell-specific inducible IGF-1 receptor (IGF-1R) knockout (KO) (CSIGF1RKO), insulin receptor (IR) KO (CSIRKO), and IR/IGF-1R double-KO (CSDIRKO) mice and evaluated their phenotypes. Telemetric electrocardiography revealed regular sinus rhythm in CSIGF1RKO mice, indicating that IGF-1R is dispensable for normal pacemaking. In contrast, CSIRKO and CSDIRKO mice exhibited profound sinus bradycardia. CSDIRKO mice showed typical sinus node dysfunction characterized by junctional rhythm and sinus pauses on electrocardiography. Interestingly, the lack of an insulin receptor in the SAN cells of CSIRKO and CSDIRKO mice caused sinus nodal fibrosis. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) protein expression significantly decreased in the CSIRKO and CSDIRKO mice relative to the controls. A patch-clamp study of the SAN cells of CSIRKO mice revealed a significant decrease in the funny current, which is responsible for spontaneous diastolic depolarization in the SAN. This result suggested that insulin receptor loss reduces the heart rate via downregulation of the HCN4 channel. Additionally, HCN1 expression was decreased in CSDIRKO mice, explaining their sinus node dysfunction. Our results reveal a previously unrecognized role of insulin/IGF-1 signaling in sinus node structural maintenance and pacemaker function.


Assuntos
Síndrome do Nó Sinusal , Nó Sinoatrial , Camundongos , Animais , Nó Sinoatrial/metabolismo , Síndrome do Nó Sinusal/metabolismo , Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo
3.
Cell Death Dis ; 12(7): 688, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244467

RESUMO

The insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiomyocytes is implicated in physiological hypertrophy and myocardial aging. Although fibroblasts account for a small amount of the heart, they are activated when the heart is damaged to promote cardiac remodeling. However, the role of IGF-1R signaling in cardiac fibroblasts is still unknown. In this study, we investigated the roles of IGF-1 signaling during agonist-induced cardiac fibrosis and evaluated the molecular mechanisms in cultured cardiac fibroblasts. Using an experimental model of cardiac fibrosis with angiotensin II/phenylephrine (AngII/PE) infusion, we found severe interstitial fibrosis in the AngII/PE infused myofibroblast-specific IGF-1R knockout mice compared to the wild-type mice. In contrast, low-dose IGF-1 infusion markedly attenuated AngII-induced cardiac fibrosis by inhibiting fibroblast proliferation and differentiation. Mechanistically, we demonstrated that IGF-1-attenuated AngII-induced cardiac fibrosis through the Akt pathway and through suppression of rho-associated coiled-coil containing kinases (ROCK)2-mediated α-smooth muscle actin (αSMA) expression. Our study highlights a novel function of the IGF-1/IGF-1R signaling in agonist-induced cardiac fibrosis. We propose that low-dose IGF-1 may be an efficacious therapeutic avenue against cardiac fibrosis.


Assuntos
Actinas/metabolismo , Cardiomiopatias/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Angiotensina II , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Infusões Intravenosas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenilefrina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo
4.
Biochem Biophys Res Commun ; 516(2): 350-356, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31208720

RESUMO

Receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily. RANKL increases endothelial permeability and induces angiogenesis, suggesting its critical roles in the vasculature. Despite the evidence implicating RANKL in vascular pathology, its role in ischemic retinopathy has not been previously reported. In this study, neonatal mice were exposed to 75% oxygen from postnatal day (P)7 to P12 to induce vaso-obliteration, and then returned to room air from P12 to P17, causing the retina to become hypoxic and inducing vascular endothelial growth factor (VEGF) signaling, which produces pathological neovascularization. On P12, the mice received a single intravitreal injection of control IgG1 or RANK-Fc, and retinas were obtained at P17. On P17, RANKL was expressed strongly and selectively in the neovascular tufts (NVT) area. RANKL colocalized with αSMA or PDGFRß in NVT. However, co-immunostaining revealed that CD31-positive areas were not the same as RANKL, which indicates that RANKL might be produced by retinal pericytes, not endothelial cells. Consistent with this finding, chemical hypoxia upregulated RANKL expression in cultured human retinal pericytes but not in endothelial cells. Treatment with RANK-Fc markedly reduced the NVT area compared to that in mice administered the IgG1 injection. In contrast, the central avascular region of RANKL-Fc retina was comparable to the controls. In addition, we assessed retinal vascular permeability using FITC-labeled dextran. RANK-Fc treated mice displayed decreased vascular leakages compared to those injected with IgG1. Our work supports the use of an RANKL blockade as a potential therapeutic approach against ischemic retinopathies.


Assuntos
Isquemia/patologia , Neovascularização Patológica/patologia , Ligante RANK/antagonistas & inibidores , Doenças Retinianas/patologia , Animais , Animais Recém-Nascidos , Permeabilidade Capilar , Hipóxia Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Isquemia/complicações , Camundongos Endogâmicos C57BL , Neovascularização Patológica/complicações , Pericitos/metabolismo , Ligante RANK/metabolismo , Doenças Retinianas/complicações , Células Ganglionares da Retina/metabolismo
5.
Int J Cancer ; 143(10): 2458-2469, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070361

RESUMO

Insulin and insulin-like growth factor (IGF)-1 signaling in the thyroid are thought to be permissive for the coordinated regulation by thyroid-stimulating hormone (TSH) of thyrocyte proliferation and hormone production. However, the integrated role of insulin receptor (IR) and IGF-1 receptor (IGF-1R) in thyroid development and function has not been explored. Here, we generated thyrocyte-specific IR and IGF-1R double knockout (DTIRKO) mice to precisely evaluate the coordinated functions of these receptors in the thyroid of neonates and adults. Neonatal DTIRKO mice displayed smaller thyroids, paralleling defective folliculogenesis associated with repression of the thyroid-specific transcription factor Foxe1. By contrast, at postnatal day 14, absence of IR and IGF-1R paradoxically induced thyrocyte proliferation, which was mediated by mTOR-dependent signaling pathways. Furthermore, we found elevated production of TSH during the development of follicular hyperplasia at 8 weeks of age. By 50 weeks, all DTIRKO mice developed papillary thyroid carcinoma (PTC)-like lesions that correlated with induction of the ErbB pathway. Taken together, these data define a critical role for IR and IGF-1R in neonatal thyroid folliculogenesis. They also reveal an important reciprocal relationship between IR/IGF-1R and TSH/ErbB signaling in the pathogenesis of thyroid follicular hyperplasia and, possibly, of papillary carcinoma.


Assuntos
Receptores ErbB/metabolismo , Receptor IGF Tipo 1/deficiência , Receptor de Insulina/deficiência , Câncer Papilífero da Tireoide/metabolismo , Células Epiteliais da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Câncer Papilífero da Tireoide/patologia , Células Epiteliais da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Tireotropina/biossíntese , Tireotropina/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1183-1191, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29378301

RESUMO

While deletion of Akt1 results in a smaller heart size and Akt2-/- mice are mildly insulin resistant, Akt1-/-/Akt2-/- mice exhibit perinatal lethality, indicating a large degree of functional overlap between the isoforms of the serine/threonine kinase Akt. The present study aimed to determine the cooperative contribution of Akt1 and Akt2 on the structure and contractile function of adult hearts. To generate an inducible, cardiomyocyte-restricted Akt2 knockout (KO) model, Akt2flox/flox mice were crossed with tamoxifen-inducible MerCreMer transgenic (MCM) mice and germline Akt1-/- mice to generate the following genotypes:Akt1+/+; Akt2flox/flox (WT), Akt2flox/flox; α-MHC-MCM (iAkt2 KO), Akt1-/-, and Akt1-/-; Akt2flox/flox; α-MHC-MCM mice (Akt1-/-/iAkt2 KO). At 28 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO mice developed contractile dysfunction paralleling increased atrial and brain natriuretic peptide (ANP and BNP) levels, and repressed mitochondrial gene expression. Neither cardiac fibrosis nor apoptosis were detected in Akt1-/-/iAkt2 KO hearts. To explore potential molecular mechanisms for contractile dysfunction, we investigated myocardial microstructure before the onset of heart failure. At 3 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO hearts showed decreased expression of connexin43 (Cx43) and connexin-interacting protein zonula occludens-1 (ZO-1). Furthermore, Akt1/2 silencing significantly decreased both Cx43 and ZO-1 expression in cultured neonatal rat cardiomyocytes in concert with reduced beating frequency. Akt1 and Akt2 are required to maintain cardiac contraction. Loss of Akt signaling disrupts gap junction protein, which might precipitate early contractile dysfunction prior to heart failure in the absence of myocardial remodeling, such as hypertrophy, fibrosis, or cell death.


Assuntos
Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Conexina 43/genética , Fibrose , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos , Proteína da Zônula de Oclusão-1/genética
7.
Endocrinology ; 157(1): 336-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26469138

RESUMO

IGF-1 receptor (IGF-1R) signaling is implicated in cardiac hypertrophy and longevity. However, the role of IGF-1R in age-related cardiac remodeling is only partially understood. We therefore sought to determine whether the deletion of the IGF-1R in cardiomyocytes might delay the development of aging-associated myocardial pathologies by examining 2-year-old male cardiomyocyte-specific IGF-1R knockout (CIGF1RKO) mice. Aging was associated with the induction of IGF-1R expression in hearts. Cardiomyocytes hypertrophied with age in wild-type (WT) mice. In contrast, the cardiac hypertrophic response associated with aging was blunted in CIGF1RKO mice. Concomitantly, fibrosis was reduced in aged CIGF1RKO compared with aged WT hearts. Expression of proinflammatory cytokines such as IL-1α, IL-1ß, IL-6, and receptor activator of nuclear factor-κB ligand was increased in aged WT hearts, but this increase was attenuated in aged CIGF1RKO hearts. Phosphorylation of Akt was increased in aged WT, but not in aged CIGF1RKO, hearts. In cultured cardiomyocytes, IGF-1 induced senescence as demonstrated by increased senescence-associated ß-galactosidase staining, and a phosphoinositide 3-kinase inhibitor inhibited this effect. Furthermore, inhibition of phosphoinositide 3-kinase significantly prevented the increase in IL-1α, IL-1ß, receptor activator of nuclear factor-κB ligand, and p21 protein expression by IGF-1. These data reveal an essential role for the IGF-1-IGF-1R-Akt pathway in mediating cardiomyocyte senescence.


Assuntos
Envelhecimento , Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptor IGF Tipo 1/metabolismo , Remodelação Ventricular , Animais , Biomarcadores/metabolismo , Cardiomegalia/imunologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Fibrose , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/imunologia , Ventrículos do Coração/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
8.
J Biol Chem ; 289(8): 4839-52, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398673

RESUMO

Doxorubicin is one of the most widely used anti-cancer drugs, but its clinical application is compromised by severe adverse effects in different organs including cardiotoxicity. In the present study we explored mechanisms of doxorubicin-induced cytotoxicity by revealing a novel role for the AMP-activated protein kinase α2 (AMPKα2) in mouse embryonic fibroblasts (MEFs). Doxorubicin robustly induced the expression of AMPKα2 in MEFs but slightly reduced AMPKα1 expression. Our data support the previous notion that AMPKα1 harbors survival properties under doxorubicin treatment. In contrast, analyses of Ampkα2(-/-) MEFs, gene knockdown of AMPKα2 by shRNA, and inhibition of AMPKα2 activity with an AMPK inhibitor indicated that AMPKα2 functions as a pro-apoptotic molecule under doxorubicin treatment. Doxorubicin induced AMPKα2 at the transcription level via E2F1, a transcription factor that regulates apoptosis in response to DNA damage. E2F1 directly transactivated the Ampkα2 gene promoter. In turn, AMPKα2 significantly contributed to stabilization and activation of E2F1 by doxorubicin, forming a positive signal amplification loop. AMPKα2 directly interacted with and phosphorylated E2F1. This signal loop was also detected in H9c2, C2C12, and ECV (human epithelial cells) cells as well as mouse liver under doxorubicin treatment. Resveratrol, which has been suggested to attenuate doxorubicin-induced cytotoxicity, significantly blocked induction of AMPKα2 and E2F1 by doxorubicin, leading to protection of these cells. This signal loop appears to be non-carcinoma-specific because AMPKα2 was not induced by doxorubicin in five different tested cancer cell lines. These results suggest that AMPKα2 may serve as a novel target for alleviating the cytotoxicity of doxorubicin.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doxorrubicina/farmacologia , Fator de Transcrição E2F1/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Resveratrol , Estilbenos/farmacologia
9.
FASEB J ; 27(12): 4899-908, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23982142

RESUMO

Although thyroid-stimulating hormone (TSH) is known to be a major regulator of thyroid hormone biosynthesis and thyroid growth, insulin-like growth factor 1 (IGF-1) is required for mediating thyrocyte growth in concert with TSH in vitro. We generated mice with thyrocyte-selective ablation of IGF-1 receptor (TIGF1RKO) to explore the role of IGF-1 receptor signaling on thyroid function and growth. In 5-wk-old TIGF1RKO mice, serum thyroxine (T4) concentrations were decreased by 30% in concert with a 43% down-regulation of the monocarboxylate transporter 8 (MCT8), which is involved in T4 secretion. Despite a 3.5-fold increase in circulating concentrations of TSH, thyroid architecture and size were normal. Furthermore, thyrocyte area was increased by 40% in WT thyroids after 10 d TSH injection, but this effect was absent in TSH-injected TIGF1RKO mice. WT mice treated with methimazole and sodium perchlorate for 2 or 6 wk exhibited pronounced goiter development (2.0 and 5.4-fold, respectively), but in TIGF1RKO mice, goiter development was completely abrogated. These data reveal an essential role for IGF-1 receptor signaling in the regulation of thyroid function and TSH-stimulated goitrogenesis.


Assuntos
Bócio/metabolismo , Receptor IGF Tipo 1/genética , Tireotropina/metabolismo , Tiroxina/metabolismo , Animais , Antitireóideos/farmacologia , Regulação para Baixo , Bócio/induzido quimicamente , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metimazol/farmacologia , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos , Percloratos/toxicidade , Receptor IGF Tipo 1/deficiência , Compostos de Sódio/toxicidade , Simportadores , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
10.
Cardiovasc Res ; 94(1): 105-14, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22298642

RESUMO

AIMS: Although increased levels of myocardial receptor activator of nuclear factor (NF)-κB ligand (RANKL) have been reported in heart failure, the role of this pathway in mediating activation of inflammatory pathways during myocardial remodelling is less well understood. This study sought to determine the role of myocardial RANKL in regulating cytokine expression. METHODS AND RESULTS: A marked increase in RANKL expression occurred as early as 6h following transverse aortic constriction (TAC) in mouse hearts and persisted at 3 and 17 days. An increase in tumour necrosis factor-α (TNF-α), interleukin (IL)-1α, and IL-1ß was observed in the hypertrophied hearts only at 3 or 17 days after TAC. Treatment with losartan significantly attenuated TAC-induced cardiac hypertrophy, in parallel with decreased expression of RANKL, TNF-α, IL-1α, and IL-1ß. Furthermore, injection of a RANKL-neutralizing monoclonal antibody attenuated RANKL-induced cytokine expression. RANKL stimulated expression of TNF-α, IL-1α, and IL-1ß in neonatal rat cardiomyocytes via activation of NF-κB. RANKL-induced NF-κB activation and expression of these cytokines were both attenuated when RANK, receptor for RANKL, or TRAF2 or TRAF6, adaptors for RANK, was silenced by siRNA. Furthermore, inhibitors of phospholipase C (PLC), protein kinase C (PKC), and inhibitor of κB kinase also significantly inhibited RANKL-induced cellular activities, but inhibitors of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase were without effect. CONCLUSION: Our data demonstrate for the first time that the pressure-overloaded myocardium generates RANKL, which induces TNF-α, IL-1α, and IL-1ß production via a RANK-TRAF2/TRAF6-PLC-PKC-NF-κB-mediated autocrine mechanism.


Assuntos
Cardiomegalia/imunologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Miocardite/imunologia , Miócitos Cardíacos/imunologia , Ligante RANK/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Comunicação Autócrina , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Citocinas/genética , Modelos Animais de Doenças , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/genética , Miocardite/prevenção & controle , Ligante RANK/antagonistas & inibidores , Interferência de RNA , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
11.
Endocr J ; 58(11): 1013-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21908931

RESUMO

Thyroid-stimulating hormone (TSH) is the primary regulator of thyroid growth and function acting via cyclic AMP signaling cascades. In cultured thyrocytes, insulin and/or insulin-like growth factor-1 (IGF-1) are required for mediating thyrocyte proliferation in concert with TSH. To determine the role of insulin signaling in thyroid, growth in vivo, mice with thyrocyte-selective ablation of the insulin receptor (IR) were generated by crossing mice homozygous for a floxed IR allele with transgenic mice in which thyrocyte-specific expression of Cre recombinase was driven by the human thyroid peroxidase (TPO) gene promoter. Immunohistochemistry and Western blot analysis confirmed near complete loss of IR expression in the thyroid of thyrocyte IR knockout mice. These mice are viable and have no obvious thyroid dysfunction and macro- and microscopic thyroid morphology was normal. Thus, insulin signaling in thyrocytes does not play an essential role in the architecture and function of the thyroid in vivo.


Assuntos
Receptor de Insulina/deficiência , Glândula Tireoide/fisiologia , Animais , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/fisiologia , Integrases/genética , Integrases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA/química , RNA/genética , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Glândula Tireoide/citologia , Tireotropina/sangue , Tiroxina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...