Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1369753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011457

RESUMO

Electrogastrography (EGG) is a non-invasive method with high diagnostic potential for the prevention of gastroenterological pathologies in clinical practice. In this study, a review of the measurement systems, procedures, and methods of analysis used in electrogastrography is presented. A critical review of historical and current literature is conducted, focusing on electrode placement, measurement apparatus, measurement procedures, and time-frequency domain methods of filtration and analysis of the non-invasively measured electrical activity of the stomach. As a result, 129 relevant articles with primary aim on experimental diet were reviewed in this study. Scopus, PubMed, and Web of Science databases were used to search for articles in English language, according to the specific query and using the PRISMA method. The research topic of electrogastrography has been continuously growing in popularity since the first measurement by professor Alvarez 100 years ago, and there are many researchers and companies interested in EGG nowadays. Measurement apparatus and procedures are still being developed in both commercial and research settings. There are plenty variable electrode layouts, ranging from minimal numbers of electrodes for ambulatory measurements to very high numbers of electrodes for spatial measurements. Most authors used in their research anatomically approximated layout with two++ active electrodes in bipolar connection and commercial electrogastrograph with sampling rate of 2 or 4 Hz. Test subjects were usually healthy adults and diet was controlled. However, evaluation methods are being developed at a slower pace, and usually the signals are classified only based on dominant frequency. The main review contributions include the overview of spectrum of measurement systems and procedures for electrogastrography developed by many authors, but a firm medical standard has not yet been defined. Therefore, it is not possible to use this method in clinical practice for objective diagnosis. Systematic Review Registration: https://www.prisma-statement.org/.

2.
Med Sci Monit ; 29: e941287, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669252

RESUMO

Mechanical ventilation (MV) provides basic organ support for patients who have acute hypoxemic respiratory failure, with acute respiratory distress syndrome as the most severe form. The use of excessive ventilation forces can exacerbate the lung condition and lead to ventilator-induced lung injury (VILI); mechanical energy (ME) or power can characterize such forces applied during MV. The ME metric combines all MV parameters affecting the respiratory system (ie, lungs, chest, and airways) into a single value. Besides evaluating the overall ME, this parameter can be also related to patient-specific characteristics, such as lung compliance or patient weight, which can further improve the value of ME for characterizing the aggressiveness of lung ventilation. High ME is associated with poor outcomes and could be used as a prognostic parameter and indicator of the risk of VILI. ME is rarely determined in everyday practice because the calculations are complicated and based on multiple equations. Although low ME does not conclusively prevent the possibility of VILI (eg, due to the lung inhomogeneity and preexisting damage), individualization of MV settings considering ME appears to improve outcomes. This article aims to review the roles of bedside assessment of mechanical power, its relevance in mechanical ventilation, and its associations with treatment outcomes. In addition, we discuss methods for ME determination, aiming to propose the most suitable method for bedside application of the ME concept in everyday practice.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial , Respiração , Agressão , Tórax
3.
J Clin Med ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983141

RESUMO

One of the crucial tasks for the planning of surgery of the iliosacral joint is placing an iliosacral screw with the goal of fixing broken parts of the pelvis. Tracking of proper screw trajectory is usually done in the preoperative phase by the acquisition of X-ray images under different angles, which guide the surgeons to perform surgery. This approach is standardly complicated due to the investigation of 2D X-ray images not showing spatial perspective. Therefore, in this pilot study, we propose complex software tools which are aimed at making a simulation model of reconstructed CT (DDR) images with a virtual iliosacral screw to guide the surgery process. This pilot study presents the testing for two clinical cases to reveal the initial performance and usability of this software in clinical conditions. This model is consequently used for a multiregional registration with reference intraoperative X-ray images to select the slide from the 3D dataset which best fits with reference X-ray. The proposed software solution utilizes input CT slices of the pelvis area to create a segmentation model of individual bone components. Consequently, a model of an iliosacral screw is inserted into this model. In the next step, we propose the software CT2DDR which makes DDR projections with the iliosacral screw. In the last step, we propose a multimodal registration procedure, which performs registration of a selected number of slices with reference X-ray, and based on the Structural Similarity Index (SSIM) and index of correlation, the procedure finds the best match of DDR with X-ray images. In this pilot study, we also provide a comparative analysis of the computational costs of the multimodal registration upon various numbers of DDR slices to show the complex software performance. The proposed complex model has versatile usage for modeling and surgery planning of the pelvis area in fractures of iliosacral joints.

4.
Sensors (Basel) ; 22(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080793

RESUMO

The analysis and segmentation of articular cartilage magnetic resonance (MR) images belongs to one of the most commonly routine tasks in diagnostics of the musculoskeletal system of the knee area. Conventional regional segmentation methods, which are based either on the histogram partitioning (e.g., Otsu method) or clustering methods (e.g., K-means), have been frequently used for the task of regional segmentation. Such methods are well known as fast and well working in the environment, where cartilage image features are reliably recognizable. The well-known fact is that the performance of these methods is prone to the image noise and artefacts. In this context, regional segmentation strategies, driven by either genetic algorithms or selected evolutionary computing strategies, have the potential to overcome these traditional methods such as Otsu thresholding or K-means in the context of their performance. These optimization strategies consecutively generate a pyramid of a possible set of histogram thresholds, of which the quality is evaluated by using the fitness function based on Kapur's entropy maximization to find the most optimal combination of thresholds for articular cartilage segmentation. On the other hand, such optimization strategies are often computationally demanding, which is a limitation of using such methods for a stack of MR images. In this study, we publish a comprehensive analysis of the optimization methods based on fuzzy soft segmentation, driven by artificial bee colony (ABC), particle swarm optimization (PSO), Darwinian particle swarm optimization (DPSO), and a genetic algorithm for an optimal thresholding selection against the routine segmentations Otsu and K-means for analysis and the features extraction of articular cartilage from MR images. This study objectively analyzes the performance of the segmentation strategies upon variable noise with dynamic intensities to report a segmentation's robustness in various image conditions for a various number of segmentation classes (4, 7, and 10), cartilage features (area, perimeter, and skeleton) extraction preciseness against the routine segmentation strategies, and lastly the computing time, which represents an important factor of segmentation performance. We use the same settings on individual optimization strategies: 100 iterations and 50 population. This study suggests that the combination of fuzzy thresholding with an ABC algorithm gives the best performance in the comparison with other methods as from the view of the segmentation influence of additive dynamic noise influence, also for cartilage features extraction. On the other hand, using genetic algorithms for cartilage segmentation in some cases does not give a good performance. In most cases, the analyzed optimization strategies significantly overcome the routine segmentation methods except for the computing time, which is normally lower for the routine algorithms. We also publish statistical tests of significance, showing differences in the performance of individual optimization strategies against Otsu and K-means method. Lastly, as a part of this study, we publish a software environment, integrating all the methods from this study.


Assuntos
Cartilagem Articular , Algoritmos , Artefatos , Cartilagem Articular/diagnóstico por imagem , Análise por Conglomerados , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
5.
Sensors (Basel) ; 19(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783631

RESUMO

Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.


Assuntos
Doenças Musculoesqueléticas/cirurgia , Procedimentos Ortopédicos/tendências , Robótica/tendências , Cirurgia Assistida por Computador/tendências , Humanos , Imageamento Tridimensional/tendências , Doenças Musculoesqueléticas/fisiopatologia , Tomografia Computadorizada por Raios X/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...