Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373223

RESUMO

We have developed a direct time-of-flight (TOF) 250 m ranging Complementary Metal Oxide Semiconductor (CMOS) image sensor (CIS) based on a 688 × 384 pixels array of vertical avalanche photodiodes (VAPD). Each pixel of the CIS comprises VAPD with a standard four transistor pixel circuit equipped with an analogue capacitor to accumulate or count avalanche pulses. High power near infrared (NIR) short (<50 ns) and repetitive (6 kHz) laser pulses are illuminated through a diffusing optics. By globally gating the VAPD, each pulse is counted in the in-pixel counter enabling extraction of sub-photon level signal. Depth map imaging with a 10 cm lateral resolution is realized from 1 m to 250 m range by synthesizing subranges images of photon counts. Advantages and limitation of an in-pixel circuit are described. The developed CIS is expected to supersede insufficient resolution of the conventional light detection and ranging (LiDAR) systems and the short range of indirect CIS TOF.

2.
Sensors (Basel) ; 18(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361742

RESUMO

We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations.

3.
Nano Lett ; 11(7): 2628-33, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21648391

RESUMO

Large-scale uniform graphene growth was achieved by suppressing inhomogeneous carbon segregation using a single domain Ru film epitaxially grown on a sapphire substrate. An investigation of how the metal thickness affected growth and a comparative study on metals with different crystal structures have revealed that locally enhanced carbon segregation at stacking domain boundaries of metal is the origin of inhomogeneous graphene growth. Single domain Ru film has no stacking domain boundary, and the graphene growth on it is mainly caused not by segregation but by a surface catalytic reaction. Suppression of local segregation is essential for uniform graphene growth on epitaxial metal films.


Assuntos
Grafite/química , Membranas Artificiais , Rutênio/química , Nanotecnologia , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...