Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(5): e777, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37166286

RESUMO

Single-cell multi-omics analysis has emerged as a crucial tool in modern biology due to its capacity to uncover the intricate molecular heterogeneity within individual cells. Glycan structural diversity on the cell surface creates a "cell signature" that varies by cell type and state. However, single-cell glycan analysis remains a challenge. This protocol presents a series of techniques and procedures that enable the simultaneous measurements of glycan and RNA at the single-cell level via DNA-barcoded lectin-based sequencing (scGR-seq). The techniques include (1) the preparation of DNA-barcoded lectins, (2) a step-by-step protocol for single-cell glycan/RNA sequencing, and (3) a data analysis approach for the integration of glycan and RNA data. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of DNA-barcoded lectins Basic Protocol 2: Single-cell glycan/RNA sequencing.


Assuntos
Lectinas , Polissacarídeos , Análise de Sequência de RNA , Membrana Celular/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Lectinas/química , Lectinas/metabolismo , RNA/genética
2.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887075

RESUMO

Neurotrophins are a family of secreted proteins expressed in the peripheral nervous system and the central nervous system that support neuronal survival, synaptic plasticity, and neurogenesis. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB are highly expressed in the cortical and hippocampal areas and play an essential role in learning and memory. The decline of cognitive function with aging is a major risk factor for cognitive diseases such as Alzheimer's disease. Therefore, an alteration of BDNF/TrkB signaling with aging and/or pathological conditions has been indicated as a potential mechanism of cognitive decline. In this review, we summarize the cellular function of neurotrophin signaling and review the current evidence indicating a pathological role of neurotrophin signaling, especially of BDNF/TrkB signaling, in the cognitive decline in aging and age-related cognitive diseases. We also review the therapeutic approach for cognitive decline by the upregulation of the endogenous BDNF/TrkB-system.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Humanos , Neurotrofina 3/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia
3.
BMC Gastroenterol ; 22(1): 153, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35350978

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest gastrointestinal cancers with a 5-year survival rate of less than 10%. Biomarkers for early PDAC detection are useful in treating patients with PDAC. Extracellular vesicles (EVs) are lipid-bound vesicles that are potential biomarkers of various diseases such as PDAC. In this study, we quantitatively measured the serum levels of EVs (CD63+-EVs) or platelet-derived EVs (CD41+- and CD61+-EVs) and evaluated their potential use as biomarkers of PDAC. METHODS: We measured the serum levels of CD63+-, CD41+-, CD61+-EVs using sandwich enzyme-linked immunosorbent assay based on Tim4 with specificity for phosphatidylserine on EVs in age- and sex-matched healthy controls (HCs, n = 39) and patients with PDAC (n = 39). We also examined the effect of tumor burden on the serum EV levels after surgical resection (n = 28). CA19-9, a clinical PDAC biomarker, was also measured for comparison. RESULTS: Serum levels of CD63+-EVs, CD41+-EVs, and CD61+-EVs were significantly increased in patients with PDAC compared to HCs. Receiver operating characteristic analysis revealed that CD63+-EVs exhibited the highest diagnostic performance to discriminate patients with PDAC from HCs (area under the curve (AUC): 0.846), which was comparable to CA19-9 (AUC: 0.842). CA19-9 showed lower AUC values in early stages (I-II, AUC: 0.814) than in late stages (III-IV, AUC: 0.883) PDAC. Conversely, CD63+-EVs, CD41+-EVs, and CD61+-EVs showed comparable AUCs between early- and late-stage PDAC. The combined use of CA19-9 and CD63+-EVs showed a higher diagnostic performance for early-stage PDAC (AUC: 0.903) than CA19-9. The serum levels of CD63+-EVs, CD41+-EVs, CD61+-EVs, and CA19-9 decreased significantly after surgical resection, demonstrating that EVs are increased in sera of patients depending on the tumor burden. CONCLUSIONS: The serum levels of CD63+-EVs and platelet-derived EVs (CD41+-EVs, CD61+-EVs) are increased in patients with PDAC than HCs. Since CD63+-EVs showed a high AUC to discriminate patients with PDAC from HCs; they might be useful as potential biomarkers for PDAC.


Assuntos
Adenocarcinoma , Vesículas Extracelulares , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico , Biomarcadores Tumorais , Estudos de Casos e Controles , Vesículas Extracelulares/patologia , Humanos , Neoplasias Pancreáticas/patologia , Tetraspanina 30
4.
STAR Protoc ; 3(1): 101179, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243371

RESUMO

Glycans are structurally diverse molecules found on the surface of living cells. The protocol details a system developed for combined analysis of glycan and RNA in single cells (scGR-seq) using human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neural progenitor cells (NPCs). scGR-seq consists of DNA-barcoded lectin-based glycan profiling by sequencing (scGlycan-seq) and single-cell transcriptome profiling (scRNA-seq). scGR-seq will be an essential technique to delineate the cellular heterogeneity of glycans across multicellular systems. For complete details on the use and execution of this profile, please refer to Minoshima et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA , Humanos , Polissacarídeos , RNA/genética , Análise de Célula Única/métodos , Transcriptoma/genética
5.
EMBO J ; 41(8): e109463, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35229328

RESUMO

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Assuntos
ATP Citrato (pro-S)-Liase , Medula Óssea , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo
6.
iScience ; 24(8): 102882, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401666

RESUMO

Single-cell sequencing has emerged as an indispensable technology to dissect cellular heterogeneity but never been applied to the simultaneous analysis of glycan and RNA. Using oligonucleotide-labeled lectins, we first established lectin-based glycan profiling of single cells by sequencing (scGlycan-seq). We then combined the scGlycan-seq with single-cell transcriptome profiling for joint analysis of glycan and RNA in single cells (scGR-seq). Using scGR-seq, we analyzed the two modalities in human induced pluripotent stem cells (hiPSCs) before and after differentiation into neural progenitor cells at the single-cell resolution. The combination of RNA and glycan separated the two cell types clearer than either one of them. Furthermore, integrative analysis of glycan and RNA modalities in single cells found known and unknown lectins that were specific to hiPSCs and coordinated with neural differentiation. Taken together, we demonstrate that scGR-seq can reveal the cellular heterogeneity and biological roles of glycans across multicellular systems.

7.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071978

RESUMO

The function of the brain-derived neurotrophic factor (BDNF) via activation through its high-affinity receptor Tropomyosin receptor kinase B (TrkB) has a pivotal role in cell differentiation, cell survival, synaptic plasticity, and both embryonic and adult neurogenesis in central nervous system neurons. A number of studies have demonstrated the possible involvement of altered expression and action of the BDNF/TrkB signaling in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). In this review, we introduce an essential role of the BDNF and its downstream signaling in neural function. We also review the current evidence on the deregulated the BDNF signaling in the pathophysiology of AD at gene, mRNA, and protein levels. Further, we discuss a potential usefulness of small compounds, including flavonoids, which can stimulate BDNF-related signaling as a BDNF-targeting therapy.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Suscetibilidade a Doenças , Transdução de Sinais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/genética , Sobrevivência Celular/efeitos dos fármacos , Gerenciamento Clínico , Flavonoides/farmacologia , Humanos , Terapia de Alvo Molecular , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Neurobiol Dis ; 152: 105279, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516873

RESUMO

Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca2+ influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca2+ channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca2+ over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.


Assuntos
Sinalização do Cálcio/fisiologia , Mucolipidoses/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Exocitose/fisiologia , Glicólise/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Sinapses/patologia , Sinapses/fisiologia
9.
FEBS Open Bio ; 11(3): 741-752, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345458

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of ß-amyloid plaques and the formation of neurofibrillary tangles. Extracellular vesicles (EVs) are small vesicles surrounded by a lipid bilayer membrane, which may be involved in the progression of AD. Glycans are essential building blocks of EVs, and we hypothesized that EV glycans may reflect pathological conditions of various diseases. Here, we performed glycan profiling of EVs prepared from sera of three AD patients (APs) compared to three healthy donors (HDs) using lectin microarray. Distinct glycan profiles were observed. Mannose-binding lectins exhibited significantly higher signals for AP-derived EVs than HD-derived EVs. Lectin blotting using mannose-binding lectin (rPALa) showed a single protein band at ~ 80 kDa exclusively in AP-derived EVs. LC-MS/MS analysis identified a protein band precipitated by rPALa as CD61, a marker of platelet-derived exosomes (P-Exo). Sandwich assays using Tim4 with specificity for phosphatidylserine on EVs and antibodies against P-Exo markers (CD61, CD41, CD63, and CD9) revealed that P-Exo is significantly elevated in sera of APs (n = 16) relative to age- and sex-matched HDs (n = 16). Tim4-αCD63 showed the highest value for the area under the curve (0.957) for discriminating APs from HDs, which should lead to a better understanding of AD pathology and may facilitate the development of a novel diagnostic method for AD.


Assuntos
Doença de Alzheimer/sangue , Plaquetas/citologia , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/metabolismo , Tetraspanina 30/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Plaquetas/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Integrina beta3/metabolismo , Masculino , Pessoa de Meia-Idade , Polissacarídeos/metabolismo , Análise Serial de Proteínas , Espectrometria de Massas em Tandem , Adulto Jovem
10.
Stem Cell Reports ; 14(5): 909-923, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302553

RESUMO

GM1 gangliosidosis is a lysosomal storage disease caused by loss of lysosomal ß-galactosidase activity and characterized by progressive neurodegeneration due to massive accumulation of GM1 ganglioside in the brain. Here, we generated induced pluripotent stem cells (iPSCs) derived from patients with GM1 gangliosidosis, and the resultant neurons showed impaired neurotransmitter release as a presynaptic function and accumulation of GM1 ganglioside. Treatment of normal neurons with GM1 ganglioside also disturbed presynaptic function. A high-content drug-screening system was then established and identified two compounds as drug candidates for GM1 gangliosidosis. Treatment of the patient-derived neurons with the candidate agents activated autophagy pathways, reducing GM1 ganglioside accumulation in vitro and in vivo, and restoring the presynaptic dysfunction. Our findings thus demonstrated the potential value of patient-derived iPSC lines as cellular models of GM1 gangliosidosis and revealed two potential therapeutic agents for future clinical application.


Assuntos
Autofagia , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Desenvolvimento de Medicamentos/métodos , Gangliosidose GM1/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
11.
Neuroscience ; 414: 128-140, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31283907

RESUMO

Tay-Sachs disease (TSD) is a GM2 gangliosidosis lysosomal storage disease caused by a loss of lysosomal hexosaminidase-A (HEXA) activity and characterized by progressive neurodegeneration due to the massive accumulation of GM2 ganglioside in the brain. Here, we generated iPSCs derived from patients with TSD, and found similar potential for neural differentiation between TSD-iPSCs and normal iPSCs, although neural progenitor cells (NPCs) derived from the TSD-iPSCs exhibited enlarged lysosomes and upregulation of the lysosomal marker, LAMP1, caused by the accumulation of GM2 ganglioside. The NPCs derived from TSD-iPSCs also had an increased incidence of oxidative stress-induced cell death. TSD-iPSC-derived neurons showed a decrease in exocytotic activity with the accumulation of GM2 ganglioside, suggesting deficient neurotransmission in TSD. Our findings demonstrated that NPCs and mature neurons derived from TSD-iPSCs are potentially useful cellular models of TSD and are useful for investigating the efficacy of drug candidates in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Doença de Tay-Sachs/fisiopatologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Células-Tronco Neurais/fisiologia , Neuritos/fisiologia , Sinapsinas/metabolismo , Doença de Tay-Sachs/metabolismo , Regulação para Cima/fisiologia
12.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463271

RESUMO

It is well known that brain-derived neurotrophic factor, BDNF, has an important role in a variety of neuronal aspects, such as differentiation, maturation, and synaptic function in the central nervous system (CNS). BDNF stimulates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide-3kinase (PI3K), and phospholipase C (PLC)-gamma pathways via activation of tropomyosin receptor kinase B (TrkB), a high affinity receptor for BDNF. Evidence has shown significant contributions of these signaling pathways in neurogenesis and synaptic plasticity in in vivo and in vitro experiments. Importantly, it has been demonstrated that dysfunction of the BDNF/TrkB system is involved in the onset of brain diseases, including neurodegenerative and psychiatric disorders. In this review, we discuss actions of BDNF and related signaling molecules on CNS neurons, and their contributions to the pathophysiology of brain diseases.


Assuntos
Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurogênese , Neurônios/metabolismo , Animais , Antidepressivos/uso terapêutico , Encefalopatias/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
13.
Neurochem Int ; 118: 217-224, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29958871

RESUMO

Prolonged and intense stress chronically increases blood concentration of glucocorticoids, which in turn causes downregulation of glucocorticoid receptor (GR) in the central nervous system (CNS). This process has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). Here, we found that basic fibroblast growth factor (bFGF) increased the expression of GR in the rat cerebral cortex and cultured cortical neurons and restored the reduced GR expression caused by glucocorticoid exposure. Among intracellular signaling pathways stimulated by bFGF, extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was responsible for the upregulation of GR. The bFGF-induced GR was functional as a transcription factor to enhance transcription of a target gene. Because high stress augments bFGF levels in the brain, it is likely that bFGF plays a compensating role for reduced GR expression after stress and thus should be studied as a therapeutic target for the treatment of MDD.


Assuntos
Córtex Cerebral/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Dis Model Mech ; 11(1)2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29208635

RESUMO

Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments.


Assuntos
Vesículas Extracelulares/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Tetraspanina 30/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Embrião de Mamíferos/metabolismo , Humanos , Modelos Animais , Ratos Transgênicos , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/metabolismo
15.
Int J Mol Sci ; 18(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099059

RESUMO

Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glucocorticoides/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Estresse Fisiológico , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transporte Proteico
16.
Neural Regen Res ; 12(7): 1028-1035, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852377

RESUMO

Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs) is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

17.
Neurosci Res ; 113: 28-36, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27432545

RESUMO

Growing evidence suggests that excess glucocorticoids (GCs) exposure during the pregnancy results in behavioral abnormality in offspring. Although research using animal models has demonstrated that systemic GCs treatment impairs development of fetal brain, direct impact of GCs on the phenotype of embryonic neural stem/progenitor cells (eNSPCs) and its mechanism has not been fully understood. Here, we investigated the effect of chronic GCs exposure on cell proliferation, differentiation, and survival of eNSPCs in vitro. Corticosterone (CORT, a murine GC) treatment did not affect the proliferation of eNSPCs. On the other hand, decreased expression of neuronal, synaptic, and astroglial marker proteins were observed when the differentiation of eNSPCs was induced in the presence of CORT. CORT also reduced the survival rate of eNSPCs after the differentiation. Moreover, CORT inhibited extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathways, which were activated during cell differentiation of eNSPCs. Inhibiting these signaling pathways reduced neural differentiation and eNSPCs viability, indicating their essential roles in the eNSPCs differentiation. Furthermore, IGF-I, a potent PI3K/Akt and ERK signaling stimulator, partially restored the adverse effect of CORT on eNSPCs, suggesting a possible involvement of the repression of these intracellular signaling in the GCs-caused eNSPCs impairment.


Assuntos
Corticosterona/efeitos adversos , Células-Tronco Embrionárias/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucocorticoides/efeitos adversos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Ratos Wistar , Transdução de Sinais
18.
Neurochem Int ; 97: 26-33, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131735

RESUMO

MicroRNAs (miRs) play important roles in neuronal differentiation, maturation, and synaptic function in the central nervous system. They have also been suggested to be implicated in the pathogenesis of neurodegenerative and psychiatric diseases. Although miR-132 is one of the well-studied brain-specific miRs, which regulates synaptic structure and function in the postnatal brain, its function in the prenatal brain is still unclear. Here, we investigated miR-132 function during differentiation of rat embryonic neural stem cells (eNSCs). We found that miR-132 expression significantly increased during the fetal rat brain development and neural differentiation of eNSCs in vitro. Furthermore, miR-132 expression was increased during differentiation through MAPK/ERK1/2 pathway. Inhibition of ERK1/2 activation resulted in increased levels of synaptic proteins including PSD-95, GluR1 and synapsin I. Silencing of miR-132 also increased PSD-95 and GluR1. Considering that miR-132 increases synaptic proteins in differentiated cortical neurons, our result shows a novel function of miR-132 as a negative regulator for synaptic maturation in the neuronal differentiation of eNSCs.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Células Cultivadas , Expressão Gênica , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Wistar , Sinapses/genética , Sinapses/metabolismo
19.
Neurosci Lett ; 616: 105-10, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26827720

RESUMO

Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Estresse Oxidativo , Administração Oral , Animais , Sobrevivência Celular , Células Cultivadas , Cerebelo/metabolismo , Córtex Cerebral/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/administração & dosagem , Glucose/farmacologia , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais
20.
Neurochem Int ; 91: 55-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26596846

RESUMO

Neuronal cell survival and synaptic plasticity are controlled through expression of various neurotrophic factors including brain-derived neurotrophic factor (BDNF). In the present study, we examined the mechanism behind BDNF-induced Bdnf mRNA production and the physiological role of its amplification system using cortical neurons. Exogenous BDNF was applied to the cultured cortical neurons at days in vitro (DIV) 3 and DIV 7 with or without inhibitors for intracellular signaling. Expression levels of total Bdnf and Bdnf variants (exon I, exon IV, and exon VI) were biphasically increased after the BDNF application in different developing stage of neurons. Inhibitor for extracellular signal-regulated kinase, calmodulin dependent protein kinase II, or protein kinase A repressed the BDNF-induced Bdnf mRNA expression. Furthermore, we found that application of TrkB-Fc, which scavenges produced endogenous BDNF, resulted in weakened BDNF/TrkB signaling and decreased expression of postsynaptic proteins, suggesting that newly synthesized BDNF induced by the self-amplification system contributes to the synaptic maturation and function.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Sinapses/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Células Cultivadas , Córtex Cerebral/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptor trkB/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA