Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 12(4): 509-25, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17237942

RESUMO

The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P. mirabilis catalase enriched in (57)Fe and to study them by spectroscopic methods. Two different forms of compound II, namely, low-pH compound II (LpH II) and high-pH compound II (HpH II), have been characterized by Mössbauer, extended X-ray absorption fine structure (EXAFS) and UV-vis absorption spectroscopies. The proportions of the two forms are pH-dependent and the pH conversion between HpH II and LpH II is irreversible. Considering (1) the Mössbauer parameters evaluated for four related models by density functional theory methods, (2) the existence of two different Fe-O(ferryl) bond lengths (1.80 and 1.66 A) compatible with our EXAFS data and (3) the pH dependence of the alpha band to beta band intensity ratio in the absorption spectra, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex (Fe-O approximately 1.80 A), whereas the HpH II compound corresponds to the classic ferryl Fe(IV)=O complex (Fe=O approximately 1.66 A). The large quadrupole splitting value of LpH II (measured 2.29 mm s(-1) vs. computed 2.15 mm s(-1)) compared with that of HpH II (measured 1.47 mm s(-1) vs. computed 1.46 mm s(-1)) reflects the protonation of the ferryl group. The relevancy and involvement of such (Fe(IV)=O/Fe(IV)-OH) species in the reactivity of catalase, peroxidase and chloroperoxidase are discussed.


Assuntos
Catalase/química , Cloreto Peroxidase/química , Ferro/química , Modelos Biológicos , Peroxidases/química , Proteus mirabilis/enzimologia , Prótons , Sítios de Ligação , Catalase/metabolismo , Cloreto Peroxidase/metabolismo , Concentração de Íons de Hidrogênio , Hidroxilação , Ferro/metabolismo , Isomerismo , Estrutura Molecular , Peroxidases/metabolismo , Análise Espectral
2.
J Inorg Biochem ; 100(4): 477-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16442627

RESUMO

The Proteus mirabilis catalase is one of the most efficient heme-containing catalase and forms a relatively stable compound II. Samples of compound II were prepared from PMC enriched in (57)Fe. For the first time, two different forms of compound II, namely low pH compound II (LpH II) (43%) and high pH compound II (HpH II) (25%), have been characterized by Mössbauer spectroscopy at pH 8.3. The ratio LpH II/HpH II increases irreversibly with decreasing pH. The large quadrupole splitting value of LpH II (DeltaE(Q)=2.29 (2) mm/s, with delta(/Fe)=0.03 (2) mm/s), compared to that of HpH II (DeltaE(Q)=1.47 (2) mm/s, with delta(/Fe)=0.07 (2) mm/s), reflects the protonation of the ferryl group. Quadrupole splitting values of 1.46 and 2.15mm/s have been computed by DFT for optimized models of the ferryl compound II (model 1) and the protonated ferryl compound II (model 2), respectively, starting from the Fe(IV)O model initially published by Rovira and Fita [C. Rovira, I. Fita, J. Phys. Chem. B 107 (2003) 5300-5305]. Therefore, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex, whereas the HpH II compound corresponds to the classical ferryl Fe(IV)O complex.


Assuntos
Catalase/química , Ferro/química , Proteus mirabilis/enzimologia , Catalase/metabolismo , Simulação por Computador , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Modelos Químicos , Proteus mirabilis/química , Espectroscopia de Mossbauer
3.
Inorg Chem ; 39(18): 3978-87, 2000 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-11198850

RESUMO

An intermediate-spin state very close to the mid-spin state (S = 3/2) can be stabilized in a ferric porphyrin by an integrated approach which combines the favorable effects of a weak axial field strength and of a small macrocycle hole. Axial ligand exchange by reaction of chloroiron(III)tetramethylchiroporphyrin [(TMCP)FeCl] with silver perchlorate in ethanol-chloroform leads to ethanol-ligated ferric chiroporphyrins. Two distinct crystalline products containing a bisethanol complex [[(TMCP)FeIII(EtOH)2]ClO4] and three variants of a mixed ethanol-water complex [[(TMCP)FeIII(EtOH)(H2O)]ClO4] have been structurally characterized in the solid state. The small hole of the ruffled chiroporphyrin and the weak axial oxygen ligation result in strongly tetragonally distorted complexes. The six-coordinate species exhibit long axial Fe-O bond distances (2.173(5)-2.272(4) A) and the shortest equatorial Fe-N(av) distances (1.950(5)-1.978(7) A) found as yet in a ferric porphyrin, reflecting a singly occupied dz2 orbital and a largely depopulated dx2-y2 orbital. An intriguing case of bond-stretch isomerism is seen for the axial Fe-O bonds in two crystallographically independent mixed ethanol-water species, and it is accounted for by their distinct intra- and intermolecular hydrogen-bond arrays. The Mössbauer spectrum (delta = 0.35(1) mm s-1 and delta EQ = 3.79(1) mm s-1 at 77 K) indicates a strong tetragonal distortion around the ferric ion, in agreement with the structural data. The value of the magnetic moment (mu eff = 3.8 mu B in the range 50-300 K) strongly supports a mid-spin state (S = 3/2). The EPR spectrum at 80 K (g perpendicular approximately 4.0, g parallel approximately 2.00) is consistent with a nearly pure mid-spin state (4A2) with little rhombic distortion. The 1H NMR spectra in CDCl3-EtOH exhibit upfield-shifted resonances for the pyrrole protons (delta approximately -30 ppm) which are consistent with the depopulated iron dx2-y2 orbital. Solution equilibria with water and various alcohols, and the spin state of the corresponding species, are discussed on the basis of the NMR data. The bisethanol and ethanol-water species are potential models of unknown hemoprotein ligation states such as Tyr(OH)/Tyr(OH) or Tyr(OH)/H2O that could be obtained by site-directed mutagenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...