Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15815621

RESUMO

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Assuntos
Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 4/genética , Animais , Composição de Bases , Sequência de Bases , Centrômero/genética , Sequência Conservada/genética , Ilhas de CpG/genética , Eucromatina/genética , Etiquetas de Sequências Expressas , Duplicação Gênica , Variação Genética/genética , Genômica , Humanos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Polimorfismo Genético/genética , Primatas/genética , Proteínas/genética , Pseudogenes/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA não Traduzido/análise , RNA não Traduzido/genética , Recombinação Genética/genética , Análise de Sequência de DNA
2.
Genome Res ; 14(10B): 2034-40, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489323

RESUMO

The NCBI Reference Sequence (RefSeq) project and the NIH Mammalian Gene Collection (MGC) together define a set of approximately 30,000 nonredundant human mRNA sequences with identified coding regions representing 17,000 distinct loci. These high-quality mRNA sequences allow for the identification of transcribed regions in the human genome sequence, and many researchers accept them as the correct representation of each defined gene sequence. Computational comparison of these mRNA sequences and the recently published essentially finished human genome sequence reveals several thousand undocumented nonsynonymous substitution and frame shift discrepancies between the two resources. Additional analysis is undertaken to verify that the euchromatic human genome is sufficiently complete--containing nearly the whole mRNA collection, thus allowing for a comprehensive analysis to be undertaken. Many of the discrepancies will prove to be genuine polymorphisms in the human population, somatic cell genomic variants, or examples of RNA editing. It is observed that the genome sequence variant has significant additional support from other mRNAs and ESTs, almost four times more often than does the mRNA variant, suggesting that the genome sequence is more accurate. In approximately 15% of these cases, there is substantial support for both variants, suggestive of an undocumented polymorphism. An initial screening against a 24-individual genomic DNA diversity panel verified 60% of a small set of potential single nucleotide polymorphisms from which successful results could be obtained. We also find statistical evidence that a few of these discrepancies are due to RNA editing. Overall, these results suggest that the mRNA collections may contain a substantial number of errors. For current and future mRNA collections, it may be prudent to fully reconcile each genome sequence discrepancy, classifying each as a polymorphism, site of RNA editing or somatic cell variation, or genome sequence error.


Assuntos
Variação Genética , Genoma Humano , Projeto Genoma Humano , Polimorfismo Genético , Edição de RNA , RNA Mensageiro/análise , Biologia Computacional , Etiquetas de Sequências Expressas , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...