Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6054, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025867

RESUMO

The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Córtex Cerebral , Homeostase , Neurônios , Parvalbuminas , Sono , Vigília , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Parvalbuminas/metabolismo , Masculino , Sono/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Vigília/fisiologia , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
Virchows Arch ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452846

RESUMO

Amyloidosis is triggered by the truncation of amyloid precursor proteins, causing organ damages. While previous studies found the truncation of amyloid A (AA) and amyloid transthyretin (ATTR) occurs in C- and N-terminal, respectively, the detailed mechanism of the fibril formation remains unclear. Liquid chromatography mass spectrometry is usually applied for a qualitative purpose, and thus quantification of tryptic peptide residue is difficult. We therefore employed a mass spectrometry-based quantification by isotope-labeled cell-free (MS-QBIC) to analyze the truncation processes in amyloid fibrillogenesis of AA and ATTR using the formalin-fixed paraffin-embedded tissues of autopsy cases. In this study, the process of transthyretin from an 'early fibril state' consisting of full-length ATTR to a 'mature ATTR amyloid fibril' with a truncated low-amyloidogenic segment has been mathematically revealed. The amount of full-length ATTR was nine times higher than in mature fibers. Large cohort studies using MS-QBIC may shed light on the clinical significance of amyloid fibrils.

4.
Mol Biol Cell ; 34(4): ar29, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735498

RESUMO

The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Proteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36194579

RESUMO

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Sono
6.
Mol Cell ; 82(19): 3677-3692.e11, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044902

RESUMO

The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lipossomos/metabolismo , Mamíferos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
7.
EMBO Rep ; 23(6): e54801, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417087

RESUMO

Selective autophagy cargos are recruited to autophagosomes primarily by interacting with autophagosomal ATG8 family proteins via the LC3-interacting region (LIR). The upstream sequence of most LIRs contains negatively charged residues such as Asp, Glu, and phosphorylated Ser and Thr. However, the significance of LIR phosphorylation (compared with having acidic amino acids) and the structural basis of phosphorylated LIR-ATG8 binding are not entirely understood. Here, we show that the serine residues upstream of the core LIR of the endoplasmic reticulum (ER)-phagy receptor TEX264 are phosphorylated by casein kinase 2, which is critical for its interaction with ATG8s, autophagosomal localization, and ER-phagy. Structural analysis shows that phosphorylation of these serine residues increases binding affinity by producing multiple hydrogen bonds with ATG8s that cannot be mimicked by acidic residues. This binding mode is different from those of other ER-phagy receptors that utilize a downstream helix, which is absent from TEX264, to increase affinity. These results suggest that phosphorylation of the LIR is critically important for strong LIR-ATG8 interactions, even in the absence of auxiliary interactions.


Assuntos
Caseína Quinase II , Proteínas Associadas aos Microtúbulos , Autofagia , Família da Proteína 8 Relacionada à Autofagia/química , Proteínas de Transporte/metabolismo , Caseína Quinase II/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Serina/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(12): e2116729119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302893

RESUMO

SignificanceHuman sleep phenotypes are diversified by genetic and environmental factors, and a quantitative classification of sleep phenotypes would lead to the advancement of biomedical mechanisms underlying human sleep diversity. To achieve that, a pipeline of data analysis, including a state-of-the-art sleep/wake classification algorithm, the uniform manifold approximation and projection (UMAP) dimension reduction method, and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, was applied to the 100,000-arm acceleration dataset. This revealed 16 clusters, including seven different insomnia-like phenotypes. This kind of quantitative pipeline of sleep analysis is expected to promote data-based diagnosis of sleep disorders and psychiatric disorders that tend to be complicated by sleep disorders.


Assuntos
Bancos de Espécimes Biológicos , Transtornos do Sono-Vigília , Aceleração , Humanos , Fenótipo , Sono , Reino Unido
9.
iScience ; 25(2): 103727, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106471

RESUMO

Arm acceleration data have been used to measure sleep-wake rhythmicity. Although several methods have been developed for the accurate classification of sleep-wake episodes, a method with both high sensitivity and specificity has not been fully established. In this study, we developed an algorithm, named ACceleration-based Classification and Estimation of Long-term sleep-wake cycles (ACCEL) that classifies sleep and wake episodes using only raw accelerometer data, without relying on device-specific functions. The algorithm uses a derivative of triaxial acceleration (jerk), which can reduce individual differences in the variability of acceleration data. Applying a machine learning algorithm to the jerk data achieved sleep-wake classification with a high sensitivity (>90%) and specificity (>80%). A jerk-based analysis also succeeded in recording periodic activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a useful method for large-scale sleep measurement using simple accelerometers in real-world settings.

10.
Front Syst Neurosci ; 16: 1059421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618010

RESUMO

Sleep is an evolutionarily conserved phenotype shared by most of the animals on the planet. Prolonged wakefulness will result in increased sleep need or sleep pressure. However, its mechanisms remain elusive. Recent findings indicate that Ca2+ signaling, known to control diverse physiological functions, also regulates sleep. This review intends to summarize research advances in Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in sleep regulation. Significant changes in sleep phenotype have been observed through calcium-related channels, receptors, and pumps. Mathematical modeling for neuronal firing patterns during NREM sleep suggests that these molecules compose a Ca2+-dependent hyperpolarization mechanism. The intracellular Ca2+ may then trigger sleep induction and maintenance through the activation of CaMKII, one of the sleep-promoting kinases. CaMKII and its multisite phosphorylation status may provide a link between transient calcium dynamics typically observed in neurons and sleep-wake dynamics observed on the long-time scale.

11.
Nat Commun ; 12(1): 3292, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078910

RESUMO

Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9-MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life.


Assuntos
Autofagia/genética , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Cadeias Pesadas de Miosina/genética , Quinases Relacionadas a NIMA/genética , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Cílios/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Rim/citologia , Rim/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Quinases Relacionadas a NIMA/deficiência , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
12.
iScience ; 24(1): 101946, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33437934

RESUMO

Chaos behavior has been observed in various cellular and molecular processes. Here, we modeled reversible phosphorylation dynamics to elucidate a design principle for autonomous chaos generation that may arise from generic enzymatic reactions. A comprehensive parameter search demonstrated that the reaction system composed of a set of kinases and phosphatases and two substrates with two modification sites exhibits chaos behavior. All reactions are described according to the Michaelis-Menten reaction scheme without exotic functions being applied to enzymes and substrates. Clustering analysis of parameter sets that can generate chaos behavior revealed the existence of motif structures. These chaos motifs allow the two-substrate species to interact via enzyme availability and constrain the two substrates' dynamic changes in phosphorylation status so that they occur at different timescales. This chaos motif structure is found in several enzymatic reactions, suggesting that chaos behavior may underlie cellular autonomy in a variety of biochemical systems.

13.
Front Psychol ; 11: 575328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123055

RESUMO

Sleep is a fundamental property conserved across species. The homeostatic induction of sleep indicates the presence of a mechanism that is progressively activated by the awake state and that induces sleep. Several lines of evidence support that such function, namely, sleep need, lies in the neuronal assemblies rather than specific brain regions and circuits. However, the molecular mechanism underlying the dynamics of sleep need is still unclear. This review aims to summarize recent studies mainly in rodents indicating that protein phosphorylation, especially at the synapses, could be the molecular entity associated with sleep need. Genetic studies in rodents have identified a set of kinases that promote sleep. The activity of sleep-promoting kinases appears to be elevated during the awake phase and in sleep deprivation. Furthermore, the proteomic analysis demonstrated that the phosphorylation status of synaptic protein is controlled by the sleep-wake cycle. Therefore, a plausible scenario may be that the awake-dependent activation of kinases modifies the phosphorylation status of synaptic proteins to promote sleep. We also discuss the possible importance of multisite phosphorylation on macromolecular protein complexes to achieve the slow dynamics and physiological functions of sleep in mammals.

14.
PLoS One ; 15(7): e0235143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609750

RESUMO

To clarify the significance of quantitative analyses of amyloid proteins in clinical practice and in research relating to systemic amyloidoses, we applied mass spectrometry-based quantification by isotope-labeled cell-free products (MS-QBIC) to formalin-fixed, paraffin-embedded (FFPE) tissues. The technique was applied to amyloid tissues collected by laser microdissection of Congo red-stained lesions of FFPE specimens. Twelve of 13 amyloid precursor proteins were successfully quantified, including serum amyloid A (SAA), transthyretin (TTR), immunoglobulin kappa light chain (IGK), immunoglobulin lambda light chain (IGL), beta-2-microglobulin (B2M), apolipoprotein (Apo) A1, Apo A4, Apo E, lysozyme, Apo A2, gelsolin, and fibrinogen alpha chain; leukocyte cell-derived chemotaxin-2 was not detected. The quantification of SAA, TTR, IGK, IGL, and B2M confirmed the responsible proteins, even when the immunohistochemical results were not decisive. Considerable amounts of Apo A1, Apo A4, and Apo E were deposited in parallel amounts with the responsible proteins. Quantification of amyloid protein by MS-QBIC is feasible and useful for the classification of and research on systemic amyloidoses.


Assuntos
Proteínas Amiloidogênicas/análise , Amiloidose/patologia , Espectrometria de Massas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
15.
J Cell Sci ; 133(13)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32482797

RESUMO

Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.


Assuntos
Endocitose , Proteínas Nucleares , Albuminas/genética , Membrana Celular , Rim , Proteínas Nucleares/genética
16.
Nat Commun ; 11(1): 1982, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341345

RESUMO

Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.


Assuntos
Encéfalo/patologia , Cerebelo/patologia , Eletrólitos , Imageamento Tridimensional , Microscopia de Fluorescência , Adulto , Animais , Animais Recém-Nascidos , Callithrix , Feminino , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica
17.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31031966

RESUMO

Since Ronald Konopka and Seymour Benzer's discovery of the gene Period in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving Period, and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with Period, a series of discoveries in the past decade have shown us that post-transcriptional regulation and protein modification, such as phosphorylation and oxidation, are alternatives ways to building a ticking clock.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Retroalimentação , Oxirredução
19.
Sci Rep ; 8(1): 2351, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402915

RESUMO

Mutations in either cubilin (CUBN) or amnionless (AMN) genes cause Imerslund-Gräsbeck syndrome (IGS), a hereditary disease characterised by anaemia attributed to selective intestinal malabsorption of cobalamin and low-molecular weight proteinuria. Although cubilin protein does not have a transmembrane segment, it functions as a multi-ligand receptor by binding to the transmembrane protein, amnionless. We established a system to quantitatively analyse membrane targeting of the protein complex in cultured renal and intestinal cells and analysed the pathogenic mechanisms of mutations found in IGS patients. A novel CUBN mutation, several previously reported CUBN missense mutations and all previously reported AMN missense mutations resulted in endoplasmic reticulum (ER) retention and completely inhibited amnionless-dependent plasma membrane expression of cubilin. The ER retention of cubilin and amnionless was confirmed in renal proximal tubular cells of a patient with IGS. Notably, the interaction between cubilin and amnionless was not sufficient, but amnionless-mediated glycosylation of cubilin was necessary for their surface expression. Quantitative mass spectrometry and mutagenesis demonstrated that N-linked glycosylation of at least 4 residues of cubilin protein was required for its surface targeting. These results delineated the molecular mechanisms of membrane trafficking of cubilin in renal and intestinal cells.


Assuntos
Transporte Proteico , Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Proteínas de Membrana , Mutação de Sentido Incorreto , Proteínas/genética , Receptores de Superfície Celular/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-29038116

RESUMO

The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.


Assuntos
Relógios Circadianos/fisiologia , Eucariotos/fisiologia , Regulação da Expressão Gênica/fisiologia , Animais , Cianobactérias/fisiologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...