Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(37): 6369-6383, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37550053

RESUMO

To form a perceptual decision, the brain must acquire samples of evidence from the environment and incorporate them in computations that mediate choice behavior. While much is known about the neural circuits that process sensory information and those that form decisions, less is known about the mechanisms that establish the functional linkage between them. We trained monkeys of both sexes to make difficult decisions about the net direction of visual motion under conditions that required trial-by-trial control of functional connectivity. In one condition, the motion appeared at different locations on different trials. In the other, two motion patches appeared, only one of which was informative. Neurons in the parietal cortex produced brief oscillations in their firing rate at the time routing was established: upon onset of the motion display when its location was unpredictable across trials, and upon onset of an attention cue that indicated in which of two locations an informative patch of dots would appear. The oscillation was absent when the stimulus location was fixed across trials. We interpret the oscillation as a manifestation of the mechanism that establishes the source and destination of flexibly routed information, but not the transmission of the information per se Significance Statement It has often been suggested that oscillations in neural activity might serve a role in routing information appropriately. We observe an oscillation in neural firing rate in the lateral intraparietal area consistent with such a role. The oscillations are transient. They coincide with the establishment of routing, but they do not appear to play a role in the transmission (or conveyance) of the routed information itself.


Assuntos
Percepção de Movimento , Neurônios , Masculino , Feminino , Animais , Neurônios/fisiologia , Atenção/fisiologia , Lobo Parietal/fisiologia , Comportamento de Escolha , Percepção de Movimento/fisiologia , Estimulação Luminosa
2.
Elife ; 72018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30051817

RESUMO

Insights from causal manipulations of brain activity depend on targeting the spatial and temporal scales most relevant for behavior. Using a sensitive perceptual decision task in monkeys, we examined the effects of rapid, reversible inactivation on a spatial scale previously achieved only with electrical microstimulation. Inactivating groups of similarly tuned neurons in area MT produced systematic effects on choice and confidence. Behavioral effects were attenuated over the course of each session, suggesting compensatory adjustments in the downstream readout of MT over tens of minutes. Compensation also occurred on a sub-second time scale: behavior was largely unaffected when the visual stimulus (and concurrent suppression) lasted longer than 350 ms. These trends were similar for choice and confidence, consistent with the idea of a common mechanism underlying both measures. The findings demonstrate the utility of hyperpolarizing opsins for linking neural population activity at fine spatial and temporal scales to cognitive functions in primates.


Assuntos
Comportamento Animal/fisiologia , Macaca mulatta/fisiologia , Percepção de Movimento/fisiologia , Lobo Temporal/fisiologia , Animais , Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Masculino , Neurônios/fisiologia , Optogenética/métodos , Estimulação Luminosa , Vias Visuais/fisiologia , Percepção Visual/fisiologia
3.
Proc Natl Acad Sci U S A ; 114(34): E7179-E7186, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784756

RESUMO

Neuronal inhibition can occur via synaptic mechanisms or through tonic activation of extrasynaptic receptors. In spinal cord, glycine mediates synaptic inhibition through the activation of heteromeric glycine receptors (GlyRs) composed primarily of α1 and ß subunits. Inhibitory GlyRs are also found throughout the brain, where GlyR α2 and α3 subunit expression exceeds that of α1, particularly in forebrain structures, and coassembly of these α subunits with the ß subunit appears to occur to a lesser extent than in spinal cord. Here, we analyzed GlyR currents in several regions of the adolescent mouse forebrain (striatum, prefrontal cortex, hippocampus, amygdala, and bed nucleus of the stria terminalis). Our results show ubiquitous expression of GlyRs that mediate large-amplitude currents in response to exogenously applied glycine in these forebrain structures. Additionally, tonic inward currents were also detected, but only in the striatum, hippocampus, and prefrontal cortex (PFC). These tonic currents were sensitive to both strychnine and picrotoxin, indicating that they are mediated by extrasynaptic homomeric GlyRs. Recordings from mice deficient in the GlyR α3 subunit (Glra3-/-) revealed a lack of tonic GlyR currents in the striatum and the PFC. In Glra2-/Y animals, GlyR tonic currents were preserved; however, the amplitudes of current responses to exogenous glycine were significantly reduced. We conclude that functional α2 and α3 GlyRs are present in various regions of the forebrain and that α3 GlyRs specifically participate in tonic inhibition in the striatum and PFC. Our findings suggest roles for glycine in regulating neuronal excitability in the forebrain.


Assuntos
Glicinérgicos/farmacologia , Glicina/metabolismo , Prosencéfalo/fisiologia , Receptores de Glicina/metabolismo , Estricnina/farmacologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Picrotoxina/farmacologia , Prosencéfalo/efeitos dos fármacos , Receptores de Glicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...