Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 204(3): 1075-1087, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27585844

RESUMO

The organization and stability of higher order structures that form in the extracellular matrix (ECM) to mediate the attachment of muscles are poorly understood. We have made the surprising discovery that a subset of clotting factor proteins are also essential for muscle attachment in the model organism Drosophila melanogaster One such coagulation protein, Fondue (Fon), was identified as a novel muscle mutant in a pupal lethal genetic screen. Fon accumulates at muscle attachment sites and removal of this protein results in decreased locomotor behavior and detached larval muscles. A sensitized genetic background assay reveals that fon functions with the known muscle attachment genes Thrombospondin (Tsp) and Tiggrin (Tig). Interestingly, Tig is also a component of the hemolymph clot. We further demonstrate that an additional clotting protein, Larval serum protein 1γ (Lsp1γ), is also required for muscle attachment stability and accumulates where muscles attach to tendons. While the local biomechanical and organizational properties of the ECM vary greatly depending on the tissue microenvironment, we propose that shared extracellular protein-protein interactions influence the strength and elasticity of ECM proteins in both coagulation and muscle attachment.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Músculo Esquelético/metabolismo , Tendões/metabolismo , Animais , Fatores de Coagulação Sanguínea/genética , Proteínas Sanguíneas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Hemolinfa/metabolismo , Músculo Esquelético/fisiologia , Ligação Proteica , Tendões/fisiologia , Trombospondinas/genética , Trombospondinas/metabolismo
2.
J Cell Sci ; 126(Pt 22): 5210-23, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046451

RESUMO

Establishment and maintenance of stable muscle attachments is essential for coordinated body movement. Studies in Drosophila have pioneered a molecular understanding of the morphological events in the conserved process of muscle attachment formation, including myofiber migration, muscle-tendon signaling, and stable junctional adhesion between muscle cells and their corresponding target insertion sites. In both Drosophila and vertebrate models, integrin complexes play a key role in the biogenesis and stability of muscle attachments through the interactions of integrins with extracellular matrix (ECM) ligands. We show that Drosophila importin-7 (Dim7) is an upstream regulator of the conserved Elmo-Mbc→Rac signaling pathway in the formation of embryonic muscle attachment sites (MASs). Dim7 is encoded by the moleskin (msk) locus and was identified as an Elmo-interacting protein. Both Dim7 and Elmo localize to the ends of myofibers coincident with the timing of muscle-tendon attachment in late myogenesis. Phenotypic analysis of elmo mutants reveal muscle attachment defects similar to those previously described for integrin mutants. Furthermore, Elmo and Dim7 interact both biochemically and genetically in the developing musculature. The muscle detachment phenotype resulting from mutations in the msk locus can be rescued by components in the Elmo signaling pathway, including the Elmo-Mbc complex, an activated Elmo variant, or a constitutively active form of Rac. In larval muscles, the localization of Dim7 and activated Elmo to the sites of muscle attachment is attenuated upon RNAi knockdown of integrin heterodimer complex components. Our results show that integrins function as upstream signals to mediate Dim7-Elmo enrichment to the MASs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Carioferinas/genética , Desenvolvimento Muscular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Carioferinas/metabolismo , Movimento/fisiologia , Mioblastos/citologia , Mioblastos/metabolismo , Interferência de RNA , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...