Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 140(19): 194304, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24852535

RESUMO

We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state (1)H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the (1)H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.


Assuntos
Hidrocarbonetos Aromáticos/química , Modelos Químicos , Modelos Moleculares , Prótons , Simulação por Computador , Teste de Materiais , Conformação Molecular , Rotação , Marcadores de Spin
2.
Langmuir ; 27(5): 1707-12, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21244076

RESUMO

The reverse Pluronic triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO(14)-PEO(24)-PPO(14), where the subscripts denote the number of monomers in each block. In water, 17R4 shows both a transition to aggregated micellar species at lower temperatures and a separation into copolymer-rich and copolymer-poor liquid phases at higher temperatures. For 17R4 in H(2)O and in D(2)O, we have determined (1) the phase boundaries corresponding to the micellization line, (2) the cloud point curves marking the onset of phase separation at various compositions, and (3) the coexistence curves for the phase separation (the compositions of coexisting phases). In both H(2)O and in D(2)O, 17R4 exhibits coexistence curves with lower consolute temperatures and compositions that differ from the minima in the cloud point curves; we take this as an indication of the polydispersity of the micellar species. The coexistence curves for compositions near the critical composition are described well by an Ising model. For 17R4 in both H(2)O and D(2)O, the critical composition is 0.22 ± 0.01 in volume fraction. The critical temperatures differ: 44.8 °C in H(2)O and 43.6 °C in D(2)O. The cloud point curve for the 17R4/D(2)O is as much as 9 °C lower than in H(2)O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...