Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 400, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510939

RESUMO

BACKGROUND: C2H2-zinc finger protein family is commonly found in the plant, and it is known as the key actors in the regulation of transcription and vital component of chromatin structure. A large number of the C2H2-zinc finger gene members have not been well characterized based on their functions and structure in cotton. However, in other plants, only a few C2H2-zinc finger genes have been studied. RESULTS: In this work, we performed a comprehensive analysis and identified 386, 196 and 195 C2H2-zinc finger genes in Gossypium hirsutum (upland cotton), Gossypium arboreum and Gossypium raimondii, respectively. Phylogenetic tree analysis of the C2H2-zinc finger proteins encoding the C2H2-zinc finger genes were classified into seven (7) subgroups. Moreover, the C2H2-zinc finger gene members were distributed in all cotton chromosomes though with asymmetrical distribution patterns. All the orthologous genes were detected between tetraploid and the diploid cotton, with 154 orthologous genes pair detected between upland cotton and Gossypium arboreum while 165 orthologous genes were found between upland cotton and Gossypium raimondii. Synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates (Ka/Ks) analysis indicated that the cotton C2H2-zinc finger genes were highly influenced mainly by negative selection, which maintained their protein levels after the duplication events. RNA-seq data and RT-qPCR validation of the RNA seq result revealed differential expression pattern of some the C2H2-zinc finger genes at different stages of cotton fiber development, an indication that the C2H2-zinc finger genes play an important role in initiating and regulating fiber development in cotton. CONCLUSIONS: This study provides a strong foundation for future practical genome research on C2H2-zinc finger genes in upland cotton. The expression levels of C2H2-zinc finger genes family is a pointer of their involvement in various biochemical and physiological functions which are directly related to cotton fiber development during initiation and elongation stages. This work not only provides a basis for determining the nominal role of the C2H2-zinc finger genes in fiber development but also provide valuable information for characterization of potential candidate genes involved in regulation of cotton fiber development.


Assuntos
Genoma de Planta , Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Gossypium/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
2.
BMC Genomics ; 20(1): 661, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426741

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS: In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION: The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fibra de Algodão , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Gossypium/metabolismo , MicroRNAs/metabolismo , Mutação , RNA Mensageiro/metabolismo , RNA-Seq , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...