Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1363543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660140

RESUMO

Lung cancer is the leading cause of cancer mortality. Despite therapeutic advances in recent years, new treatment strategies are needed to improve outcomes of lung cancer patients. Mutant p53 is prevalent in lung cancers and drives several hallmarks of cancer through a gain-of-function oncogenic program, and often predicts a poorer prognosis. The oncogenicity of mutant p53 is related to its stability and accumulation in cells by evading degradation by the proteasome. Therefore, destabilization of mutant p53 has been sought as a therapeutic strategy, but so far without clinical success. In this study, we report that proteasome inhibition results in degradation of mutant p53 in non-small cell lung cancer (NSCLC) cell lines bearing the R273H mutant protein and show evidence that this was mediated by hsp70. NSCLC cell lines with the mutant R273H allele demonstrated increased susceptibility and apoptosis to proteasome inhibitors. These data suggest that proteasome inhibitors could have therapeutic implications in some subsets of TP53 mutated NSCLC.

3.
Cancer Biol Ther ; 21(4): 293-302, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32041464

RESUMO

Gain-of-function (GOF) p53 mutations occur commonly in human cancer and lead to both loss of p53 tumor suppressor function and acquisition of aggressive cancer phenotypes. The oncogenicity of GOF mutant p53 is highly related to its abnormal protein stability relative to wild type p53, and overall stoichiometric excess. We provide an overview of the mechanisms of dysfunction and abnormal stability of GOF p53 specifically in lung cancer, the leading cause of cancer-related mortality, where, depending on histologic subtype, 33-90% of tumors exhibit GOF p53 mutations. As a distinguishing feature and oncogenic mechanism in lung and many other cancers, GOF p53 represents an appealing and cancer-specific therapeutic target. We review preclinical evidence demonstrating paradoxical depletion of GOF p53 by proteasome inhibitors, as well as preclinical and clinical studies of proteasome inhibition in lung cancer. Finally, we provide a rationale for a reexamination of proteasome inhibition in lung cancer, focusing on tumors expressing GOF p53 alleles.


Assuntos
Neoplasias Pulmonares/patologia , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Neoplasias Pulmonares/etiologia
4.
Case Rep Nephrol ; 2019: 1214208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360561

RESUMO

The ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis and weight loss. It is known to induce ketosis but is not an established cause of clinically significant ketoacidosis. Lactation ketoacidosis is well established in bovine literature but remains a rare phenomenon in humans. Here we present a life-threatening case of severe ketoacidosis in a nondiabetic lactating mother on a strict ketogenic diet. We review the available case reports of lactation ketoacidosis in humans and the mechanisms thereof. Although ketogenic diet has been shown to be safe in nonpregnant individuals, the safety of this diet in lactating mothers is not known. Health professionals and mothers should be made aware of the potential risk associated with a strict ketogenic diet when combined with lactation. Prompt diagnosis and immediate treatment cannot be overemphasized. To our knowledge, this is the first reported case of life-threatening lactation ketoacidosis associated with ketogenic diet while consuming an adequate number of calories per day.

5.
Pharmaceuticals (Basel) ; 9(3)2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27384570

RESUMO

Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007-2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity, separate and distinct from its anticoagulant activity, while other studies indicate a role for heparin in treating inflammation, infertility, and infectious disease. A variety of strategies have been proposed to produce a bioengineered heparin. In this review, we discuss several of these strategies including microbial production, mammalian cell production, and chemoenzymatic modification. We also propose strategies for creating "designer" heparins and heparan-sulfates with various biochemical and physiological properties.

6.
Biotechnol J ; 10(7): 1067-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26037948

RESUMO

Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO-S cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100-fold and the heparin/heparan sulfate yield ∼10-fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed-batch shaker-flask studies using a proprietary, chemically-defined feed, resulted in ∼two-fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three-fold increase in product titer. Transferring the process to a stirred-tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 µg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug.


Assuntos
Anticoagulantes , Células CHO , Heparina/biossíntese , Engenharia Metabólica , Animais , Reatores Biológicos , Vias Biossintéticas , Cricetinae , Cricetulus , Heparina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...