Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808366

RESUMO

Pest attacks on plants can substantially change plants' volatile organic compounds (VOCs) emission profiles. Comparison of VOC emission profiles between non-infected/non-infested and infected/infested plants, as well as resistant and susceptible plant cultivars, may provide cues for a deeper understanding of plant-pest interactions and associated resistance. Furthermore, the identification of biomarkers-specific biogenic VOCs-associated with the resistance can serve as a non-destructive and rapid tool for phenotyping applications. This research aims to compare the VOCs emission profiles under diverse conditions to identify constitutive (also referred to as green VOCs) and induced (resulting from biotic/abiotic stress) VOCs released in potatoes and wheat. In the first study, wild potato Solanum bulbocastanum (accession# 22; SB22) was inoculated with Meloidogyne chitwoodi race 1 (Mc1), and Mc1 pathotype Roza (SB22 is resistant to Mc1 and susceptible to pathotype Roza), and VOCs emission profiles were collected using gas chromatography-flame ionization detection (GC-FID) at different time points. Similarly, in the second study, the VOCs emission profiles of resistant ('Hollis') and susceptible ('Alturas') wheat cultivars infested with Hessian fly insects were evaluated using the GC-FID system. In both studies, in addition to variable plant responses (susceptibility to pests), control treatments (non-inoculated or non-infested) were used to compare the VOCs emission profiles resulting from differences in stress conditions. The common VOC peaks (constitutive VOCs) between control and infected/infested samples, and unique VOC peaks (induced VOCs) presented only in infected/infested samples were analyzed. In the potato-nematode study, the highest unique peak was found two days after inoculation (DAI) for SB22 inoculated with Mc1 (resistance response). The most common VOC peaks in SB22 inoculated with both Mc1 and Roza were found at 5 and 10 DAI. In the wheat-insect study, only the Hollis showed unique VOC peaks. Interestingly, both cultivars released the same common VOCs between control and infected samples, with only a difference in VOC average peak intensity at 22.4 min retention time where the average intensity was 4.3 times higher in the infested samples of Hollis than infested samples of Alturas. These studies demonstrate the potential of plant VOCs to serve as a rapid phenotyping tool to assess resistance levels in different crops.


Assuntos
Solanum tuberosum , Compostos Orgânicos Voláteis , Animais , Insetos , Plantas , Triticum
2.
Front Plant Sci ; 13: 779096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769296

RESUMO

Hessian fly [Mayetiola destructor (Say)] is a major pest of wheat (Triticum aestivum L.) throughout the United States and in several other countries. A highly effective and economically feasible way to control Hessian fly is with resistant cultivars. To date, over 37 Hessian fly resistance genes have been discovered and their approximate locations mapped. Resistance breeding is still limited, though, by the genes' effectiveness against predominant Hessian fly biotypes in a given production area, genetic markers that are developed for low-throughput marker systems, poorly adapted donor germplasm, and/or the inadequacy of closely linked DNA markers to track effective resistance genes in diverse genetic backgrounds. The purposes of this study were to determine the location of the Hessian fly resistance gene in the cultivar "Kelse" (PI 653842) and to develop and validate Kompetitive Allele Specific PCR (KASP) markers for the resistance locus. A mapping population was genotyped and screened for Hessian fly resistance. The resulting linkage map created from 2,089 Single Nucleotide Polymorphism SNP markers placed the resistance locus on the chromosome 6B short arm, near where H34 has been reported. Three flanking SNPs near the resistance locus were converted to KASP assays which were then validated by fine-mapping and testing a large panel of breeding lines from hard and soft wheat germplasm adapted to the Pacific Northwest. The KASP markers presented here are tightly linked to the resistance locus and can be used for marker-assisted selection by breeders working on Hessian fly resistance and allow confirmation of this Hessian fly resistance gene in diverse germplasm.

4.
Sci Rep ; 11(1): 4761, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637802

RESUMO

The Hessian fly Mayetiola destructor (Diptera: Cecidmyiidae) is a major pest of wheat, globally. We conducted a series of laboratory choice and no-choice assays to quantify Hessian fly host preference for barley (cv. Champion), oat (cv. Cayuse), susceptible (cv. Alturas), and resistant (cv. Hollis) wheat. In addition, larval survivorship and adult emergence were compared among the evaluated host plants. We then examined whether insect preference for a host can be explained by differences in plant spectral reflectance. Further, larval survivorship and adult emergence were compared among host plants in relation to phytohormone concentrations. Hessian flies laid more eggs on wheat compared to either oat or barley. Spectral reflectance measurements of leaves were similar between susceptible and resistant wheat cultivars but different from those of barley and oat. Our results suggested that higher reflectance in the near-infrared range and lower reflectance in the visible range may be used by females for host selection. Hessian fly larvae were unable to develop into the pupal stage on resistant wheat and oat. No significant difference in larval survivorship was detected between the susceptible wheat and barley. However, adult emergence was significantly higher on barley than the susceptible wheat. Phytohormonal evaluations revealed that salicylic acid (SA) may be an important contributor to plant defense response to larval feeding as relatively higher concentrations of SA were present in oat and resistant wheat. While resistance in the resistant wheat is achieved only through antibiosis, both antibiosis and antixenosis were in effect rendering oat as a non-host for Hessian flies.


Assuntos
Dípteros/fisiologia , Grão Comestível/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Triticum/parasitologia , Animais , Avena/metabolismo , Avena/parasitologia , Grão Comestível/metabolismo , Hordeum/metabolismo , Hordeum/parasitologia , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...