Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 122(5): 1071-1078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36890296

RESUMO

Despite increasing reports and concerns about the development of resistance to public-health insecticides in malaria vectors, significant progress has been made in the search for alternative strategies to disrupt the disease transmission cycle by targeting insect vectors and thus sustaining vector management. The use of insecticidal plants is a strategy that can be employed and this study investigates the toxicity potential of insecticidal plant oils shortlisted in an ethnobotanical survey on Anopheles gambiae larvae and adult stages. The shortlisted plants parts, the leaves of Hyptis suaveolens, Ocimum gratissimum, Nicotiana tabacum, Ageratum conyzoides, and Citrus sinensis fruit-peel were collected and extracted using a Clevenger apparatus. Larvae and female adults of deltamethrin-susceptible Anopheles gambiae were obtained from an already-established colony at the University of Ilorin's Entomological Research Laboratory. In five replicates, twenty-five third instar stage larvae were used for larvicidal assays and twenty 2-5 days old adults were used for adulticidal assays. After 24 h, An. gambiae exposed to Hy. suaveolens and Ci. sinensis exhibited significantly higher larval toxicity (94.7-100%). The mortality induced by the oils of the four plants peaked at 100% after 48 h. Ni. tabacum (0.50 mg/ml) induced the highest percentage of adult mortality on An. gambiae (100%) when compared to the positive control Deltamethrin (0.05%). The lowest KdT50 was observed with 0.25 mg/ml of Ni. tabacum (20.3 min), and the lowest KdT95 was observed with 0.10 mg/ml of Ag. conyzoides (35.97 min) against adult An. gambiae. The evaluated plant oils demonstrated significant larval and adult mortality rates, lower lethal concentrations, and knockdown times, indicating promising results that can be further developed for malaria vector management.


Assuntos
Anopheles , Inseticidas , Malária , Óleos Voláteis , Piretrinas , Animais , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Malária/prevenção & controle , Piretrinas/toxicidade , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Resistência a Inseticidas
2.
J Infect Dev Ctries ; 16(8): 1351-1358, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099380

RESUMO

INTRODUCTION: To identify the specific Anopheles mosquito sibling species responsible for malaria transmission, determine their vectorial potential, and predict suitable control measures, this study investigated genetic identities, human blood feeding, and sporozoite infection rates of endophilic Anopheles mosquitoes in Gaa-Bolorunduro, a cattle rearing community in Kwara State, Nigeria. METHODOLOGY: Monthly pyrethrum spray collections of Anopheles mosquitoes were conducted for one year in addition to PCR characterization of sibling species and ELISA probing of human blood meal and sporozoite infections. Mean numbers and human blood indices (HBI) of the different Anopheles sibling species identified were compared. RESULTS: The total of 668 PCR-identified mosquitoes comprised 50.8% An. arabiensis, 46.7% An. gambiae, and 2.5% An. coluzzii. Annual mean numbers of An. arabiensis was significantly higher (p = 0.001) than An. coluzzii but not An. gambiae (p = 0.602). Proportions of An. arabiensis found with human blood (0.29) were lower compared to An. gambiae (0.72) and An. coluzzii (0.75). However, the annual mean HBI of An. arabiensis was not significantly higher than An. gambiae (p = 0.195) and An. coluzzii (p = 0.249). Plasmodium falciparum sporozoite infection rate was 1.6% in An. gambiae, 0.9% in An. arabiensis and 0% in An. coluzzii. CONCLUSIONS: The prevalent An. arabiensis and An. gambiae mosquitoes found indoors, despite the outdoor cattle population barrier, could be targeted by community-scale utilization of long-lasting insecticide-treated bed nets. Further studies on outdoor mosquito surveillance and bovine blood meal identification are required for the recommendation of suitable complementary vector control measures for the community.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Anopheles/genética , Bovinos , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores , Nigéria/epidemiologia , Linhagem , Esporozoítos
3.
PLoS Negl Trop Dis ; 16(6): e0010525, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727843

RESUMO

This study examined pyrethroid resistance intensity and mechanisms in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West Nigeria. Resistance statuses to permethrin, lambda-cyhalothrin and alphacypermethrin were determined with both WHO and CDC resistance bioassays. Synergist assay was conducted by pre-exposing the populations to Piperonyl butoxide (PBO) using the WHO method. Resistance intensities to 2x, 5x and 10x of diagnostic concentrations were determined with the CDC bottle method. Species analysis and presence of knockdown mutation (Leu-Phe) were done using Polymerase Chain Reaction (PCR). Results showed that Cx. quinquefasciatus was the only Culex spp. present and "Kdr-west" mutation was not detected in all analyzed samples. Using WHO method, Cx. quinquefasciatus resistance to permethrin was detected in Dutse (12.2%) and Kafin-Hausa (77.78%). Lambda-cyhalothrin resistance was recorded only in Kafin-Hausa (83.95%) with resistance suspected in Ringim (90%). Resistance to alphacypermethrin was recorded in all locations. Pre-exposure to PBO led to 100% mortality to alphacypermethrin and lambda-cyhalothrin in Ringim while mortality to permethrin and alphacypermethrin in Dutse increased from 12.2% to 97.5% and 64.37% to 79.52% respectively. Using CDC bottle bioassay, resistance was also recorded in all populations and the result shows a significant positive correlation (R2 = 0.728, p = 0.026) with the result from the WHO bioassay. Results of resistance intensity revealed a very high level of resistance in Kafin-Hausa with susceptibility to lambda-cyhalothrin and alphacypermethrin not achieved at 10x of diagnostic doses. Resistance intensity was also high in Dutse with susceptibility to all insecticides not achieved at 5x of diagnostic doses. Widespread and high intensity of resistance in Cx. quinquefasciatus from North-West Nigeria is a major threat to the control of diseases transmitted by Culex and other mosquito species. It is a challenge that needs to be adequately addressed so as to prevent the failure of pyrethroid-based vector control tools.


Assuntos
Anopheles , Culex , Inseticidas , Piretrinas , Animais , Culex/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores/genética , Nigéria , Permetrina/farmacologia , Piretrinas/farmacologia
4.
Acta Trop ; 227: 106291, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958768

RESUMO

Malaria is a major public health challenge in Africa with Nigeria accounting for the highest burden of the disease in the world. Vector control has proved to be a highly effective component of malaria control, however, the development and spread of insecticide resistance in major vectors of malaria have been a major challenge. This study assessed resistance mechanisms in Anopheles coluzzii populations from Kosofe, Lagos mainland and Ojo Local Government Areas in Lagos, Nigeria where An. gambiae s.l is resistant to DDT and Permethrin. WHO susceptibility bioassay test was used in determining resistance status of An. coluzzii to discriminating doses of DDT and Permethrin while synergist assay was used to assess the involvement of monooxygenases in resistance development. Sub-species of An. gambiae s.l (An. gambiae and An. coluzzii) were identified using polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism (PCR-RFLP) while Allele-Specific Polymerase Chain Reaction (AS-PCR) assay was used to detect knockdown mutation (kdr-West; L1014F). Biochemical assays were used in determining the activities of metabolic enzymes. High DDT resistance was recorded in An. coluzzii populations from the three sites. Mortality rate of mosquitoes exposed confirmed Permethrin resistance in Kosofe (50%) and Lagos mainland (48%) but resistance was suspected in Ojo (96%). All specimens tested were confirmed as An. coluzzii with low kdr frequency; 11.6%, 16.4% and 6.7% in Kosofe, Lagos mainland and Ojo respectively. Pre-exposure to synergist (PBO) before exposure to Permethrin led to increased mortality in all populations. Esterase activity was insignificantly overexpressed in Kosofe (p = 0.849) and Lagos mainland (p = 0.229) populations. In contrast, GST activity was significantly lower in populations from Lagos mainland (63.650 ± 9.861; p = 0.007) and Ojo (91.765 ± 4.959; p = 0.042) than Kisumu susceptible strains (120.250 ± 13.972). Monooxygenase activity was higher in Lagos mainland (2.371 ± 0.261) and Ojo (1.361 ± 0.067) populations, albeit significantly in Lagos mainland (p = 0.007) only. Presence of target-site mutation in all populations, increased mortality with pre-exposure to PBO and elevated monooxygenase in Lagos mainland population were confirmed. Multiple resistance mechanisms in some urban populations of An. coluzzii from Lagos, Nigeria calls for appropriate resistance management strategies.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Nigéria , Piretrinas/farmacologia , População Urbana
5.
J Med Entomol ; 58(3): 1280-1286, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33420501

RESUMO

Malaria is a leading public health challenge causing mortality and morbidity in sub-Saharan Africa. Prominent malaria vector control methods employed in sub-Saharan Africa include Long Lasting Insecticide Nets (LLINs) and Indoor Residual spraying (IRS). This study investigated knowledge, attitude and practices (KAP) of malaria vector control methods in Lagos, South-West Nigeria. Structured questionnaires were employed for the cross-sectional survey which was carried out between May and August 2018. Multi-stage sampling technique was used to select Lagos Mainland, Kosofe, and Ojo local government areas (LGAs). Five hundred and twenty questionnaires were used for the study. Data were analyzed for descriptive statistics, whereas χ 2 was used to determine influence of respondents' LGA, level of education and type of dwelling on respondents' attitude and practice. Respondents' LGAs have no significant impact on attitude and practice to malaria vector control methods. However, 'level of education' as well as 'type of dwelling structure' impacted significantly on some practices and attitude. Basically, IRS is the major tool employed in malaria vector control, but sometimes it is used in combination with other methods. A good number of residents also use LLINs. 'Choice of method' employed is mainly based on the effectiveness of method. General perception about LLINs and IRS is that they are effective, cheap and safer. Considering the widespread use of IRS and LLINs for malaria vector control in Lagos, implementation of malaria control programs should consider KAP to these two strategies.


Assuntos
Culicidae , Conhecimentos, Atitudes e Prática em Saúde , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Animais , Estudos Transversais , Nigéria
6.
J Arthropod Borne Dis ; 13(1): 50-61, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31346535

RESUMO

BACKGROUND: Timely entomological and insecticide resistance monitoring is a key to generating relevant data for vector management. We investigated the insecticide susceptibility status of Anopheles gambiae s.l. in eight rural farming communities in Southern Gombe, Nigeria. METHODS: Overall, 3-5 days-old adult female Anopheles mosquitoes reared from field-collected immature stages between September and November, 2014 were exposed to the diagnostic doses of pyrethroids, organophosphate and carbamate insecticides using the Center for Disease Control Bottle bioassay. The observatory knockdown time from exposure to each insecticide was recorded up to two hours. The dead mosquitoes were then identified morphologically and by molecular assays. RESULTS: Mortality results showed resistance in An. gambiae s.l. populations to bendiocarb (2.3-100%), deltamethrin (39-70%), pirimiphos-methyl (65-95%), dichloro-diphenyl-trichloroethane (0-38.1%), permethrin (0-46.3%) and lambda-cyhalothrin (42.5-86.4%). The few cases of full susceptibility were observed from lamdacyhalothrin exposed population of An. gambiae s.l. in Banbam and Pantami respectively. An. gambiae 177 (45%) was significantly higher (P< 0.05) than An. arabiensis 64 (16.3%), An. coluzzii 34 (8.7%) and An. gambiae/An. coluzzii hybrid 78 (19.8%). CONCLUSION: A strong evidence of widespread resistance in the major malaria vector species in Southern Gombe to all common classes of insecticides is a justification for the State Malaria Elimination Programme to consciously consider incorporating insecticide resistance management strategies into control programs in order to sustain the future of current control interventions.

7.
PLoS One ; 13(12): e0205230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517090

RESUMO

Anopheles gambiae, An. coluzzii and An. arabiensis are the three major vectors of malaria in Nigeria. These mosquitoes have developed resistance to different insecticides. Insecticides resistance intensity assay was recently introduced to provide insight into the potential operational significance of insecticide resistance. Here, we present data on pyrethroids resistance intensity and resistance mechanisms from six vector surveillance sites (Lagos, Ogun, Edo, Anambra, Kwara and Niger) in Nigeria. Adult Anopheles reared from larval collections were tested using WHO insecticides susceptibility protocol with 1x concentration of permethrin and deltamethrin followed with intensity assays with 5x and 10x concentrations of both insecticides. Synergistic and biochemical assays were carried out and underlying resistance mechanisms determined following standard protocols. Anopheles gambiae constituted >50% samples tested in five sites. Permethrin and deltamethrin resistance was observed at all the sites. The Kdt50 varied from 15 minutes (CI = 13.6-17.2) in deltamethrin to 42.1 minutes (CI = 39.4-44.1) in permethrin. For both insecticides, Kdt95 was >30 minutes with 25% to 87% post exposure mortality at the different sites. The West Africa knock down resistance (kdr-w) mechanism was found at each site. Resistant An. gambiae from Lagos, Ogun and Niger synergized prior to permethrin or deltamethrin exposure showed significant mortality (89-100%) compared to unsynergized mosquitoes (Lagos, p = 0.031; Ogun, p = 0.025; Niger, p = 0.018). Biochemical analyses revealed significant increased levels of P450 enzymes in resistant Anopheles gambiae from Lagos (p = 0.038); Ogun (p = 0.042) and Niger (p = 0.028) in addition to GST in Lagos (p = 0.028) and Ogun (p = 0.033). Overall, the results revealed high pyrethroid resistance associated with increased activities of metabolic enzymes (P450 + GST) in An. gambiae and An. coluzzii from Lagos and Ogun. The presence of kdr + P450 conferred moderate resistance whereas low resistance was the case where kdr was the sole resistance mechanism. Findings thus suggests that elevated levels of cytochrome P450 enzymes together with GST were responsible for high or severe pyrethroid resistance.


Assuntos
Anopheles , Resistência a Medicamentos/genética , Malária , Mosquitos Vetores , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Humanos , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Nigéria
8.
Parasit Vectors ; 11(1): 497, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180885

RESUMO

BACKGROUND: Entomological indices within a specific area vary with climatic factors such as rainfall, temperature and relative humidity. Contributions of such weather parameter fluctuations to the changes in entomological data obtained within a community under implementation of a promising vector control intervention should be taken into account. This study reports on inter-annual changes in entomological indices within two rural communities, one of which was under insecticide-treated durable wall lining (DL) installation. METHODS: Community-wide DL installation was followed by monthly meteorological data and pyrethrum spray mosquito collections for 2 years in intervention and a similar neighbouring community (control). Human blood meal and sporozoite ELISA tests were conducted on female mosquitoes collected alongside PCR identification of subsamples. Mosquitoes collected at the intervention site were tested in cone susceptibility assays against subsamples of installed DL materials collected on a 6-monthly basis for 2 years. Deltamethrin susceptibility of Anopheles mosquitoes from the intervention site was determined before and after DL installation. Entomological indices in the first and second years were compared within each site. RESULTS: Rainfall in the study area increased significantly (t = -3.45, df = 11, P = 0.005) from first to second year. Correlation between rainfall and Anopheles densities in both sites were significant (r = 0.681, P < 0.001). Mosquitoes collected at the intervention site were susceptible (100%) to deltamethrin at baseline but resistant (92%) in the second year. However, subsamples of installed DL materials remained effective (100% mortality) against Anopheles mosquitoes from the intervention site throughout the 6-monthly cone assay exposures. Monthly pyrethrum spray collections showed significant increase in Anopheles densities from first to second year in the control (6.36 ± 1.61 vs 7.83 ± 2.39; t = -3.47, df = 11, P = 0.005), but not in the intervention (2.83 ± 1.86 vs 4.23 ± 3.31; t = -2.03, df = 11, P = 0.067) community. However, mean annual mosquito man-biting rates increased significantly in both intervention (0.88 ± 0.18 vs 1.06 ± 0.38; F(1, 10) = 9.50, P = 0.012) and control (1.45 ± 0.31 vs 1.61 ± 0.34; F(1, 10) = 10.18, p = 0.010) sites along with increase (≥ 1.6 times) in sporozoite rates within intervention (0-2.13%) and control (2.56-4.04%) communities. CONCLUSIONS: The slight increase in vector density, induced by significant increase in rainfall, led to increased sporozoite infection and significantly increased man-biting rates within the intervention site. These reveal the need for incorporation of integrated vector management strategies to complement DL installation especially in regions with high rainfall and mosquito density. Promising vector control tools such as DL should be evaluated on a long-term basis to reveal the possible effect of weather parameters on control performance and also allow for holistic recommendations.


Assuntos
Anopheles/efeitos dos fármacos , Materiais de Construção , Inseticidas/farmacologia , Malária/prevenção & controle , Tempo (Meteorologia) , Animais , Anopheles/fisiologia , Sangue , Entomologia/estatística & dados numéricos , Humanos , Resistência a Inseticidas , Malária/epidemiologia , Malária/transmissão , Refeições , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Nigéria/epidemiologia , Piretrinas/farmacologia , Chuva , População Rural/estatística & dados numéricos , Esporozoítos/efeitos dos fármacos , Esporozoítos/isolamento & purificação
9.
Malar J ; 17(1): 193, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764426

RESUMO

BACKGROUND: Despite the availability of effective malaria vector control intervention tools, implementation of control programmes in Nigeria is challenged by inadequate entomological surveillance data. This study was designed to assess and build the existing capacity for malaria vector surveillance, control and research (MVSC&R) in Nigerian institutions. METHODS: Application call to select qualified candidates for the capacity building (CB) intervention training programme was advertised in a widely read newspaper and online platforms of national and international professional bodies. Two trainings were organized to train selected applicants on field activities, laboratory tools and techniques relevant to malaria vector surveillance and control research. A semi-structured questionnaire was administered to collect data on socio-demographic characteristics of participants, knowledge and access of participants to field and laboratory techniques in MVSC&R. Similarly, pre and post-intervention tests were conducted to assess the performance and improvement in knowledge of the participants. Mentoring activities to sustain CB activities after the training were also carried out. RESULTS: A total of 23 suitable applicants were shortlisted out of the 89 applications received. The South West, South East and North Central geopolitical zones of the country had the highest applications and the highest selected number of qualified applicants compared to the South South and North East geopolitical zones. The distribution with respect to gender indicated that males (72.7%) were more than females (27.3%). Mean score of participants' knowledge of field techniques was 27.8 (± 10.8) before training and 67.7 (± 9.8) after the training. Similarly, participants' knowledge on laboratory techniques also improved from 37.4 (± 5.6) to 77.2 (± 10.8). The difference in the mean scores at pre and post-test was statistically significant (p < 0.05). Access of participants to laboratory and field tools used in MVSC&R was generally low with insecticide susceptibility bioassays and pyrethrum spray collection methods being the most significant (p < 0.05). CONCLUSIONS: The capacity available for vector control research and surveillance at institutional level in Nigeria is weak and require further strengthening. Increased training and access of personnel to relevant tools for MVSC&R is required in higher institutions in the six geopolitical zones of the country.


Assuntos
Fortalecimento Institucional/organização & administração , Monitoramento Epidemiológico , Controle de Insetos , Mosquitos Vetores , Malária/transmissão , Nigéria , Pesquisa/organização & administração
10.
BMC Public Health ; 14: 514, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24885737

RESUMO

BACKGROUND: Studies implemented to evaluate the success of Long-lasting insecticidal nets (LLIN) distribution campaigns are often limited to ownership and utilization rates, neglecting other factors that directly affect the efficacy of the tool in malaria control. This study investigates sleeping habits and net maintenance behaviour in addition to LLIN ownership, utilization and the challenges associated with LLIN use among residents in Ilorin City where the tool has been massively distributed. METHODS: A cross-sectional survey was conducted using pre-tested interviewer-administered questionnaire to obtain information from randomly selected household respondents in Ilorin, the Kwara State Capital. The study was conducted in July 2012, about sixteen months after the March 2011 distribution of LLIN in the locality. The results were analyzed using the EPI INFO 2007 version. RESULTS: LLIN ownership (85%) and utilization (37%) rates improved compared to earlier reports, though 29% of net users have noticed holes in the nets even as 26% claimed to have actually experienced mosquito bites under it. Most (92%) of the respondents who slept under LLIN the previous night before the study spent the first five hours of the night (19.00-23.00 hr) outdoors while 88% also engage in inappropriate net washing practices. All the LLIN users claimed to have experienced at least one malaria episode while 43% have had two or more episodes within the past twelve months. CONCLUSION: The use of LLIN among the respondents in this study was accompanied by chancy sleeping habits, inappropriate net maintenance practices and repeated experience of mosquito bites under the nets. This shows the need to sustain the will and confidence of LLIN users in this area through frequent monitoring and surveillance visits targeted at enlightening the people on habits that increase malaria exposure risks as well as proper use and maintenance of LLIN for maximum malaria vector control benefits.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Mordeduras e Picadas de Insetos/prevenção & controle , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Adulto , Estudos Transversais , Feminino , Promoção da Saúde , Humanos , Mosquiteiros Tratados com Inseticida/normas , Mosquiteiros Tratados com Inseticida/provisão & distribuição , Masculino , Controle de Mosquitos/métodos , Nigéria , Sono , Inquéritos e Questionários , Adulto Jovem
11.
Parasit Vectors ; 7: 236, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24886399

RESUMO

BACKGROUND: PermaNet® 3.0 is an insecticide synergist-combination long-lasting insecticidal net designed to have increased efficacy against malaria vectors with metabolic resistance, even when combined with kdr. The current study reports on the impact of this improved tool on entomological indices in an area with pyrethroid-resistant malaria vectors in Nigeria. METHODS: Baseline entomological indices across eight villages in Remo North LGA of Ogun State provided the basis for selection of three villages (Ilara, Irolu and Ijesa) for comparing the efficacy of PermaNet® 3.0 (PN3.0), PermaNet® 2.0 (PN2.0) and untreated polyester nets as a control (UTC). In each case, nets were distributed to cover all sleeping spaces and were evaluated for insecticidal activity on a 3-monthly basis. Collection of mosquitoes was conducted monthly via window traps and indoor resting catches. The arithmetic means of mosquito catches per house, entomological inoculation rates before and during the intervention were compared as well as three other outcome parameters: the mean mosquito blood feeding rate, mean mortality and mean parity rates. RESULTS: Anopheles gambiae s.l. was the main malaria vector in the three villages, accounting for >98% of the Anopheles population and found in appreciable numbers for 6-7 months. Deltamethrin, permethrin and lambdacyhalothrin resistance were confirmed at Ilara, Irolu and Ijesa. The kdr mutation was the sole resistance mechanism at Ilara, whereas kdr plus P450-based metabolic mechanisms were detected at Irolu and Ijesa. Bioassays repeated on domestically used PN 2.0 and PN 3.0 showed persistent optimal (100%) bio-efficacy for both net types after the 3rd, 6th, 9th and 12th month following net distribution. The use of PN 3.0 significantly reduced mosquito densities with a 'mass killing' effect inside houses. Households with PN 3.0 also showed reduced blood feeding as well as lower mosquito parity and sporozoite rates compared to the PN 2.0 and the UTC villages. A significant reduction in the entomological inoculation rate was detected in both the PN 2.0 village (75%) and PN 3.0 village (97%) post LLIN-distribution and not in the UTC village. CONCLUSION: The study confirms the efficacy of PN 3.0 in reducing malaria transmission compared to pyrethroid-only LLINs in the presence of malaria vectors with P450-based metabolic- resistance mechanisms.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Malária/prevenção & controle , Piretrinas/farmacologia , Animais , Coleta de Dados , Características da Família , Comportamento Alimentar , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/efeitos dos fármacos , Malária/epidemiologia , Mutação , Nigéria/epidemiologia , Densidade Demográfica , Inquéritos e Questionários , Fatores de Tempo
12.
Parasitol Res ; 112(10): 3433-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842885

RESUMO

Mosquito samples were collected from rural and urban communities in three selected major towns in Southwestern Nigeria to determine the impact of urbanization on the diversity and abundance of Anopheles species associated with malaria transmission in human habitations. A total of ten Anopheles species were identified in the rural communities, while eight Anopheles species were identified in the urban communities. Out of the ten Anopheles species identified, only four species, Anopheles gambiae (Giles), Anopheles funestus (Giles), Anopheles moucheti (Evans), and Anopheles nili (Theobald), were established to be vectors of malaria occurring in greater than 50% of the rural communities. Only A. gambiae occurred in all the urban communities, while the other three major vectors occurred in not more than 20% of the urban communities. Margalef's and Shannon-Wiener indices showed that diversity and species richness were higher in the rural compared to the urban. Comprehensive information on malaria vector abundance and diversity in rapidly changing communities is an important tool in planning and implementing successful vector control programs.


Assuntos
Anopheles/genética , Anopheles/fisiologia , Malária/transmissão , População Rural , População Urbana , Animais , Humanos , Insetos Vetores , Nigéria , Especificidade da Espécie
13.
Parasit Vectors ; 5: 116, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22686575

RESUMO

BACKGROUND: Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. METHODS: Two - three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. RESULTS: Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. CONCLUSION: Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of insecticide resistance management strategies to combat the multiple resistance identified.


Assuntos
Anopheles/efeitos dos fármacos , Carbamatos/farmacologia , DDT/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Anopheles/genética , DNA/genética , Feminino , Proteínas de Insetos/metabolismo , Nigéria/epidemiologia , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...