Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Afr ; 7: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783971

RESUMO

Chlamydia trachomatis ( C. trachomatis) is a common sexually transmitted infection (STI). In 2019, the World Health Organization reported about 131 million infections. The majority of infected patients are asymptomatic with cases remaining undetected. It is likely that missed C. trachomatis infections contribute to preventable adverse health outcomes in women and children. Consequently, there is an urgent need of developing efficient diagnostic methods. In this study, genome-mining approaches to identify identical multi-repeat sequences (IMRS) distributed throughout the C. trachomatis genome were used to design a primer pair that would target regions in the genome. Genomic DNA was 10-fold serially diluted (100pg/µL to 1×10 -3pg/µL) and used as DNA template for PCR reactions. The gold standard PCR using 16S rRNA primers was also run as a comparative test, and products were resolved on agarose gel. The novel assay, C. trachomatis IMRS-PCR, had an analytical sensitivity of 4.31 pg/µL, representing better sensitivity compared with 16S rRNA PCR (9.5 fg/µL). Our experimental data demonstrate the successful development of lateral flow and isothermal assays for detecting C. trachomatis DNA with potential use in field settings. There is a potential to implement this concept in miniaturized, isothermal, microfluidic platforms, and laboratory-on-a-chip diagnostic devices for reliable point-of-care testing.

2.
Heliyon ; 10(6): e27344, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533083

RESUMO

Background: Curable sexually transmitted infections (STIs), such as Neisseria gonorrhoeae (N. gonorrhoeae), are a major cause of poor pregnancy outcomes. The infection is often asymptomatic in pregnant women, and a syndrome-based approach of testing leads to a missed diagnosis. Culture followed by microscopy is inadequate and time-consuming. The gold standard nucleic acid amplification tests require advanced infrastructure settings, whereas point-of-care tests are limited to immunoassays with sensitivities and specificities insufficient to accurately diagnose asymptomatic cases. This necessitates the development and validation of assays that are fit for purpose. Methods: We identified new diagnostic target biomarker regions for N. gonorrhoeae using an algorithm for genome mining of identical multi-repeat sequences (IMRS). These were then developed as DNA amplification primers to design better diagnostic assays. To test the primer pair, genomic DNA was 10-fold serially diluted (100 pg/µL to 1 × 10-3 pg/µL) and used as DNA template for PCR reactions. The gold standard PCR using 16S rRNA primers was also run as a comparative test, and both assay products were resolved on 1% agarose gel. Results: Our newly developed N. gonorrhoeae IMRS-PCR assay had an analytical sensitivity of 6 fg/µL representing better sensitivity than the 16S rRNA PCR assay with an analytical sensitivity of 4.3096 pg/µL. The assay was also successfully validated using clinical urethral swab samples. We further advanced this technique by developing an isothermal IMRS, which was both reliable and sensitive for detecting cultured N. gonorrhoeae isolates at a concentration of 38 ng/µL. Combining isothermal IMRS with a low-cost lateral flow assay, we were able to detect N. gonorrhoeae amplicons at a starting concentration of 100 pg/µL. Conclusion: Therefore, there is a potential to implement this concept within miniaturized, isothermal, microfluidic platforms, and laboratory-on-a-chip diagnostic devices for highly reliable point-of-care testing.

3.
Viruses ; 14(9)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36146718

RESUMO

We describe the characterization of an African swine fever genotype IX virus (ASFV-Kenya-IX-1033), which was isolated from a domestic pig in western Kenya during a reported outbreak. This includes the efficiency of virus replication and in vivo virulence, together with genome stability and virulence, following passage in blood macrophages and in a wild boar lung cell line (WSL). The ASFV-Kenya-IX-1033 stock retained its ability to replicate in primary macrophages and retained virulence in vivo, following more than 20 passages in a WSL. At the whole genome level, a few single-nucleotide differences were observed between the macrophage and WSL-propagated viruses. Thus, we propose that the WSL is suitable for the production of live-attenuated ASFV vaccine candidates based on the modification of this wild-type isolate. The genome sequences for ASFV-Kenya-IX-1033 propagated in macrophages and in WSL cells were submitted to GenBank, and a challenge model based on the isolate was developed. This will aid the development of vaccines against the genotype IX ASFV circulating in eastern and central Africa.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Linhagem Celular , Quênia , Nucleotídeos , Sus scrofa , Suínos , Vacinas Atenuadas
4.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146726

RESUMO

Infection of pigs with the African swine fever virus (ASFV) leads to a devastating hemorrhagic disease with a high mortality of up to 100%. In this study, a CD2v gene deletion was introduced to a genotype IX virus from East Africa, ASFV-Kenya-IX-1033 (ASFV-Kenya-IX-1033-∆CD2v), to investigate whether this deletion led to reduced virulence in domestic pigs and to see if inoculation with this LA-ASFV could induce protective immunity against parental virus challenge. All pigs inoculated with ASFV-Kenya-IX-1033-ΔCD2v survived inoculation but presented with fever, reduced appetite and lethargy. ASFV genomic copies were detected in only one animal at one time point. Seven out of eight animals survived subsequent challenge with the pathogenic parental strain (87.5%) but had mild to moderate clinical symptoms and had a gross pathology compatible with chronic ASFV infection. All mock-immunised animals developed acute ASF upon challenge with ASFV-Kenya-IX-1033 and were euthanised upon meeting the humane endpoint criteria. ASFV genome copy numbers after challenge were similar in the two groups. ASFV-Kenya-IX-1033-∆CD2v is therefore a useful tool to investigate the development of immunity to ASFV genotype IX, but safety concerns preclude its use as a candidate vaccine without further attenuation.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Animais , Deleção de Genes , Quênia , Sus scrofa , Suínos , Vacinas Virais/genética , Virulência/genética
5.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146830

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), resulting in up to 100% mortality in pigs. Although endemic in most sub-Saharan African countries, where all known ASFV genotypes have been reported, the disease has caused pandemics of significant economic impact in Eurasia, and no vaccines or therapeutics are available to date. In endeavors to develop live-attenuated vaccines against ASF, deletions of several of the ~170 ASFV genes have shown contrasting results depending on the genotype of the investigated ASFV. Here, we report the in vivo outcome of a single deletion of the A238L (5EL) gene and double deletions of A238L (5EL) and EP402R (CD2v) genes from the genome of a highly virulent genotype IX ASFV isolate. Domestic pigs were intramuscularly inoculated with (i) ASFV-Ke-ΔA238L to assess the safety of A238L deletion and (ii) ASFV-Ke-ΔEP402RΔA238L to investigate protection against challenge with the virulent wildtype ASFV-Ke virus. While A238L (5EL) gene deletion did not yield complete attenuation, co-deletion of A238L (5EL) and EP402R (CD2v) improved the safety profile of the single deletions, eliciting both humoral and cellular immune responses and conferred partial protection against challenge with the virulent wildtype ASFV-Ke virus.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , Genótipo , Sus scrofa , Suínos , Vacinas Atenuadas/genética , Proteínas Virais/genética , Vacinas Virais/genética
6.
Front Genet ; 12: 733674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527025

RESUMO

African swine fever virus (ASFV) is the etiological agent of a contagious and fatal disease of domestic pigs that has significant economic consequences for the global swine industry. Due to the lack of effective treatment and vaccines against African swine fever, there is an urgent need to leverage cutting-edge technologies and cost-effective approaches for generating and purifying recombinant virus to fast-track the development of live-attenuated ASFV vaccines. Here, we describe the use of the CRISPR/Cas9 gene editing and a cost-effective cloning system to produce recombinant ASFVs. Combining these approaches, we developed a recombinant virus lacking the non-essential gene A238L (5EL) in the highly virulent genotype IX ASFV (ASFV-Kenya-IX-1033) genome in less than 2 months as opposed to the standard homologous recombination with conventional purification techniques which takes up to 6 months on average. Our approach could therefore be a method of choice for less resourced laboratories in developing nations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...